Development of control systems for movement mechanisms of electric drives based on neural networks

dc.contributor.authorKutovoi, Yu. N.en
dc.contributor.authorObruch, I. V.en
dc.contributor.authorKunchenko, T. Yu.en
dc.date.accessioned2023-01-09T13:52:09Z
dc.date.available2023-01-09T13:52:09Z
dc.date.issued2018
dc.description.abstractThe paper presents the results of the development and investigations of intelligent control systems for electric drives of DC and AC movement mechanisms. It is shown that the use of methods of genetic algorithms for training and structural optimization of neural systems makes it possible to synthesize the control law excluding the self-oscillating process arising from the nonlinearity of the "friction pair" type load. The developed systems have a single easily realizable feedback on the speed of the motor which does not create difficulties in physical realization.en
dc.identifier.citationKutovoi Yu. N. Development of control systems for movement mechanisms of electric drives based on neural networks [Electronic resource] / Yu. N. Kutovoi, I. V. Obruch, T. Yu. Kunchenko // Acta Technica. – Electron. text data. – 2018. – Vol. 63. – No. 5. – P. 641-656. – URL: http://journal.it.cas.cz/63(2018)-5/Complete%20Issue%2063(2018)-5.pdf, free (accessed 09.01.2023).en
dc.identifier.urihttps://repository.kpi.kharkov.ua/handle/KhPI-Press/61016
dc.language.isoen
dc.publisherInstitute of Thermomechanics AS CR, v.v.i., Czech Republicen
dc.subjectneural network control systemen
dc.subjectgenetic algorithmen
dc.subjectDC motor of sequential excitationen
dc.subjectinduction motoren
dc.subjectelectric driveen
dc.subjecttransienten
dc.titleDevelopment of control systems for movement mechanisms of electric drives based on neural networksen
dc.typeArticleen

Файли

Контейнер файлів

Зараз показуємо 1 - 1 з 1
Ескіз
Назва:
AT_2018_63_5_Kutovoi_Development_of_control.pdf
Розмір:
707.92 KB
Формат:
Adobe Portable Document Format
Опис:

Ліцензійна угода

Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
11.25 KB
Формат:
Item-specific license agreed upon to submission
Опис: