Non-Iterative Rauscher Method for 1-DOF System: a New Approach to Studying Non-Autonomous System via Equivalent Autonomous One

Ескіз

Дата

2016

ORCID

DOI

Науковий ступінь

Рівень дисертації

Шифр та назва спеціальності

Рада захисту

Установа захисту

Науковий керівник

Члени комітету

Назва журналу

Номер ISSN

Назва тому

Видавець

NTU "KhPI"

Анотація

In the paper a new non-iterative variant of Rauscher method is considered. In its current statement the method can be used in analysis of forced harmonic oscillations in 1-DOF nonlinear system. It is shown that three different types o f equivalent authonomous dynamical systems can be built for a given 1-DOF non-autonomous one. Two of them (1st and 2nd type) have wider set of solutions than that of the initial system. These solutions correspond to various values of amplitude and phase of external excitation. Solutions of the equivalent system of 3rd type are exclusively periodic ones. Based on the equivalent system of 3rd type such a function W(x,x') can be constructed that its level curves correspond to periodic orbits of the initial non-autonomous system. This function can be built a priori via computation of the invariant manifold of the equivalent system of 1st type. Using the same approach the Rauscher expansions cos(Qt)=C(x,x'), sin(Qt)=S(x,x') can also be constructed. It is also shown that equivalent systems can be investigated by means of harmonic balance method which allows construction o f W(x,x'), C(x,x') andS(x,x') in semi-analytical manner.

Опис

Ключові слова

rauscher method, equivalent autonomous system, periodic solutions, invariant manifolds methodology, continuation tecniques, harmonic balance method

Бібліографічний опис

Perepelkin N. V. Non-Iterative Rauscher Method for 1-DOF System: a New Approach to Studying Non-Autonomous System via Equivalent Autonomous One/ N. V. Perepelkin // Nonlinear Dynamics–2016 (ND-KhPI2016) : proceedings of 5th International Conference, dedicated to the 90th anniversary of Academician V. L. Rvachev, September 27-30, 2016 = Нелінійна динаміка–2016 : тези доп. 5-ї Міжнар. конф., 27-30 вересня 2016 р. – Kharkov : NTU "KhPI", 2016. – P. 173-182.

Підтвердження

Рецензія

Додано до

Згадується в