Исследование моделей сверточных автоэнкодеров для выделения признаков в наборах стереоизображений

Ескіз

Дата

2017

ORCID

DOI

10.20998/2411-0558.2017.50.04

item.page.thesis.degree.name

item.page.thesis.degree.level

item.page.thesis.degree.discipline

item.page.thesis.degree.department

item.page.thesis.degree.grantor

item.page.thesis.degree.advisor

item.page.thesis.degree.committeeMember

Назва журналу

Номер ISSN

Назва тому

Видавець

НТУ "ХПИ"

Анотація

В работе проведен процесс моделирования обучения без учителя сверточных автоэнкодеров для выделения признаков в наборах стереопар. Исследовано влияние количества обучаемых фильтров и топологии автоэнкодера на точность восстановления изображений. Определены конфигурации автоэнкодеров для точного восстановления входных изображений.
The modeling process of convolutional autoencoder unsupervised learning for feature extraction from stereo images sets is provided. The number of learning filters and topology of autoencoder influence on quality of image reconstruction is researched. Autoencoder configurations of high efficiency reconstruction is defined.

Опис

Ключові слова

обучение без учителя, стереопара, восстановление изображений, входные изображения, unsupervised learning, image reconstruction

Бібліографічний опис

Дашкевич А. А. Исследование моделей сверточных автоэнкодеров для выделения признаков в наборах стереоизображений / А. А. Дашкевич // Вісник Нац. техн. ун-ту "ХПІ" : зб. наук. пр. Сер. : Інформатика та моделювання. – Харків : НТУ "ХПІ", 2017. – № 50 (1271). – С. 112-118.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced