Порівняння температурних залежностей енергій активації для течії та дифузії у чистій воді
Дата
2022
DOI
doi.org/10.20998/2079-0821.2022.02
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
Національний технічний університет "Харківський політехнічний інститут"
Анотація
Розглядаються проблеми розрахунків та природи сил міжмолекулярних взаємодій у рідинах, як їхньої енергії активації, у широкому інтервалі температур існування рідкої фази на прикладі чистої води. Головною методичною проблемою у стандартних розрахунках енергії активації є відсутність збереження числа молекул у системі під час зміни температури та тиску. Проблема вирішується записом співвідношення Ареніуса та розрахунком енергії активації через кінематичну в'язкість, для якої число молекул у системі зберігається. При розрахунках енергії активації для процесу дифузії запропоновано альтернативний метод розрахунку за даними про в'язкість даної рідини, яка визначається значно точніше, ніж дифузія. Проведено розрахунки величин енергій активації у чистій воді на лінії насичення для процесів течії та дифузії у області існування її рідкої фази – від точки плавлення до критичної температури. Отримано для них апроксимуючі формули, що містять ступеневі та експонентні вклади. Спостерігається гарна згода апроксимацій з розрахунками длятемператур від 0 °С до 230 °С. Показано, що різниця між енергіями активації процесів обумовлена відмінностями їх фізичних механізмів.
Величина енергії активації для процесу дифузії більша за величиною і повільніше зменшується з нагріванням, ніж для процесу течії, оскільки для дифузії всі зв'язки молекул тривимірні та ізотропні у просторі. Процес течії зумовлено зовнішніми силами, що стимулюють розриви міжмолекулярних зв'язків між шарами течії рідини, і ці взаємодії стають квазідвовимірними. В результаті енергія активації для процесу дифузії зменшується у бік критичної температури повільніше, як корінь другого ступеня, тоді як для течії – лінійно. Для обох енергій активації поблизу точки плавлення (0…90 °С) спостерігаються експонентні вклади. Вони зумовлені руйнуванням залишків кристалічної структури льоду у воді у вигляді водних кластерів. Для них і в рідкій фазі води зберігаються сильніші і стійкіші міжмолекулярні зв'язки
молекул, що спостерігаються у замкнутих гексагональних кільцях структури води, та які експонентне руйнуються з нагрівом.
The problems of calculations and the nature of intermolecular interactions forces in liquids, as their activation energies, in a wide range of temperatures of the existence of the liquid phase are considered by example of pure water. The main methodological problem in standard calculations of the activation energy is the lack of conservation of the number of molecules in the system where temperature and pressure changes. The problem is solved by writing down the Arrhenius correlation and calculating the activation energy through the kinematic viscosity, for which the number of molecules in the system is conserved. When calculating the activation energy for the diffusion process, an alternative calculation method is proposed. It’s based on the viscosity of a given liquid, which is determined much more accurately than diffusion. The calculations of the activation energies in pure water are carried out on the saturation line for the processes of flow and diffusion in the region of existence of its liquid phase, from the melting point till the critical temperature. Approximating formulas containing power and exponential contributions are obtained for them. Good correlation of the approximations with the calculations for temperatures from 0 ° С to 230 ° С is observed. It is shown that the difference between the activation energies of the processes is due to the differences in their physical mechanisms. The activation energy for the diffusion process is larger and decreases more slowly with heating than for the flow process, since all the bonds of molecules for diffusion are three-dimensional and isotropic in space. The flow process is caused by external forces that stimulate the rupture of intermolecular bonds between the layers of the fluid flow, and these interactions become quasi-two-dimensional. As a result, the activation energy for the diffusion process decreases to the critical temperature more slowly, like a root of the second degree, while for a flow it decreases linearly. For both activation energies, exponential contributions are observed near the melting point (0 ... 90 ° C). They are caused by the destruction of the remains of the crystal structure of ice in water in the form of water clusters. In the liquid phase of water, stronger and more stable in time intermolecular bonds of molecules, observed in closed hexagonal rings of water structure, which exponentially decay with increasing temperature, are retained for them.
The problems of calculations and the nature of intermolecular interactions forces in liquids, as their activation energies, in a wide range of temperatures of the existence of the liquid phase are considered by example of pure water. The main methodological problem in standard calculations of the activation energy is the lack of conservation of the number of molecules in the system where temperature and pressure changes. The problem is solved by writing down the Arrhenius correlation and calculating the activation energy through the kinematic viscosity, for which the number of molecules in the system is conserved. When calculating the activation energy for the diffusion process, an alternative calculation method is proposed. It’s based on the viscosity of a given liquid, which is determined much more accurately than diffusion. The calculations of the activation energies in pure water are carried out on the saturation line for the processes of flow and diffusion in the region of existence of its liquid phase, from the melting point till the critical temperature. Approximating formulas containing power and exponential contributions are obtained for them. Good correlation of the approximations with the calculations for temperatures from 0 ° С to 230 ° С is observed. It is shown that the difference between the activation energies of the processes is due to the differences in their physical mechanisms. The activation energy for the diffusion process is larger and decreases more slowly with heating than for the flow process, since all the bonds of molecules for diffusion are three-dimensional and isotropic in space. The flow process is caused by external forces that stimulate the rupture of intermolecular bonds between the layers of the fluid flow, and these interactions become quasi-two-dimensional. As a result, the activation energy for the diffusion process decreases to the critical temperature more slowly, like a root of the second degree, while for a flow it decreases linearly. For both activation energies, exponential contributions are observed near the melting point (0 ... 90 ° C). They are caused by the destruction of the remains of the crystal structure of ice in water in the form of water clusters. In the liquid phase of water, stronger and more stable in time intermolecular bonds of molecules, observed in closed hexagonal rings of water structure, which exponentially decay with increasing temperature, are retained for them.
Опис
Ключові слова
течія, дифузії, енергія активації, температурні залежності, кінематична в'язкість, апроксимація, водні кластери, flow, diffusion, activation energy, temperature dependence, kinematic viscosity, approximation, water clusters
Бібліографічний опис
Малафаєв М. Т. Порівняння температурних залежностей енергій активації для течії та дифузії у чистій воді / М. Т. Малафаєв, О. О. Гапонова, Т. В. Школьнікова // Вісник Національного технічного університету "ХПІ". Сер. : Хімія, хімічна технологія та екологія = Bulletin of the National Technical University "KhPI". Ser. : Chemistry, Chemical Technology and Ecology : зб. наук. пр. – Харків : НТУ "ХПІ", 2022. – № 1 (7). – С. 14-21.