Multi-modal geometrical non-linear free vibrations of composite laminated plates with the complex shape
Вантажиться...
Дата
Автори
ORCID
DOI
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
NTU "KhPI"
Анотація
Geometrically non-linear free vibrations of the composite laminated plates are investigated using new multi modal approach to discretization of motion equations . The non-linear governing equations for laminated plates are derived by Hamilton’s principle using first-order shear deformation theory. Due to proposed algorithm of the discretization all unknown functions except of transverse displacement are eliminated and governing equations are reduced to system of ordinary differential equations in time by the Bubnov-Galerkin procedure. The expansion of all unknown functions in the truncated Fourier series is performed using the eigenfunctions of the linear vibration problems and solutions of the sequence of elasticity problems. All auxiliary problems are solved by RFM (R-functions method).
Опис
Ключові слова
Бібліографічний опис
Kurpa L. V. Multi-modal geometrical non-linear free vibrations of composite laminated plates with the complex shape / L. V. Kurpa, N. A. Budnikov // Nonlinear Dynamics–2010 = Нелинейная динамика–2010 : proceedings the 3rd International Conference, dedicated to the 125th Anniversary of the National Technical University "Kharkov Polytechnic Institute", September 21-24, 2010 / National Technical University "Kharkov Polytechnic Institute" [et al.]. – Kharkov : NTU "KhPI", 2010. – P. 344-348.