Unbalanced load flow with hybrid wavelet transform and support vector machine based Error-Correcting Output Codes for power quality disturbances classification including wind energy
Дата
2019
ORCID
DOI
doi.org/10.20998/2074-272X.2019.6.09
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
Национальный технический университет "Харьковский политехнический институт"
Анотація
Purpose. The most common methods to designa multiclass classification consist to determine a set of binary classifiers and to combine them. In this paper support vector machine with Error-Correcting Output Codes (ECOC-SVM) classifier is proposed to classify and characterize the power qualitydisturbances such as harmonic distortion,voltage sag, and voltage swell include wind farms generator in power transmission systems. Firstly three phases unbalanced load flow analysis is executed to calculate difference electric network characteristics, levels of voltage, active and reactive power. After, discrete wavelet transform is combined with the probabilistic ECOC-SVM model to construct the classifier. Finally, the ECOC-SVM classifies and identifies the disturbance type according tothe energy deviation of the discrete wavelet transform. The proposedmethod gives satisfactory accuracy with 99.2% compared with well known methods and shows that each power quality disturbances has specific deviations from the pure sinusoidal waveform,this is good at recognizing and specifies the type of disturbance generated from the wind
power generator.
Наиболее распространенные методы построения мультиклассовой классификации заключаются в определении набора двоичных классификаторов и их объединении. В данной статье предложена машина опорных векторов с классификатором выходных кодов исправления ошибок(ECOC-SVM) с целью классифицировать и характеризовать такие нарушения качества электроэнергии, как гармонические искажения, падение напряжения и скачок напряжения, включая генератор ветровых электростанций в системах передачи электроэнергии. Сначала выполняется анализ потока несимметричной нагрузки трех фаз для расчета разностных характеристик электрической сети, уровней напряжения, активной и реактивной мощности. После этого дискретное вейвлет-преобразование объединяется с вероятностной моделью ECOC-SVM для построения классификатора. Наконец, ECOC-SVM классифицирует и идентифицирует тип возмущения в соответствии с отклонением энергии дискретного вейвлет-преобразования. Предложенный метод дает удовлетворительную точность 99,2% по сравнению с хорошо известными методами и показывает, что каждое нарушение качества электроэнергии имеет определенные отклонения от чисто синусоидальной формы волны, что способствует распознаванию и определению типа возмущения, генерируемого ветровым генератором.
Наиболее распространенные методы построения мультиклассовой классификации заключаются в определении набора двоичных классификаторов и их объединении. В данной статье предложена машина опорных векторов с классификатором выходных кодов исправления ошибок(ECOC-SVM) с целью классифицировать и характеризовать такие нарушения качества электроэнергии, как гармонические искажения, падение напряжения и скачок напряжения, включая генератор ветровых электростанций в системах передачи электроэнергии. Сначала выполняется анализ потока несимметричной нагрузки трех фаз для расчета разностных характеристик электрической сети, уровней напряжения, активной и реактивной мощности. После этого дискретное вейвлет-преобразование объединяется с вероятностной моделью ECOC-SVM для построения классификатора. Наконец, ECOC-SVM классифицирует и идентифицирует тип возмущения в соответствии с отклонением энергии дискретного вейвлет-преобразования. Предложенный метод дает удовлетворительную точность 99,2% по сравнению с хорошо известными методами и показывает, что каждое нарушение качества электроэнергии имеет определенные отклонения от чисто синусоидальной формы волны, что способствует распознаванию и определению типа возмущения, генерируемого ветровым генератором.
Опис
Ключові слова
wavelet energy, энергия вейвлета
Бібліографічний опис
Rahmani A. Unbalanced load flow with hybrid wavelet transform and support vector machine based Error-Correcting Output Codes for power quality disturbances classification including wind energy / A. Rahmani, L. Slimani, T. Bouktir // Електротехніка і Електромеханіка = Electrical engineering & Electromechanics. – 2019. – № 6. – С. 62-69.