Теплогидравлическая эффективность различных способов закрутки потока
Дата
2015
Автори
ORCID
DOI
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
НТУ "ХПИ"
Анотація
Выполнено обобщение опубликованных экспериментальных данных по теплогидравлической эффективности и коэффициенту качества различных способов закрутки потока. Показано, что различные
способы закрутки потока характеризуются общим механизмом интенсификации теплообмена и
описываются единой кривой на диаграммах теплогидравлической эффективности. Предложенный критерий качества обеспечивает более обоснованное ранжирование и сравнение интенсификаторов теплообмена.
The intensification of the heat exchange is always accompanied by an increase in hydraulic losses. To estimate thermal and hydraulic efficiency of heat exchange intensifiers many criteria are used to characterize the ratio of an increase in the heat exchange to the associated losses of the pressure required for the heat carrier pumping. This scientific paper is devoted to the analysis of the following criteria of thermal and hydraulic efficiency, in particular the Reynolds analogy factor and the quality coefficient. The heat hydraulic efficiency of heat-exchange intensifiers with full and partial flow vortex and that of the intensifiers that are characterized both by the flow vortex, the vortex mixing and the flow separation have been studied. The results showed that the studied heat exchange intensifiers of a vortex type have different structural design but a rather common mechanism of heat exchange intensification due to the flow vortex (full and partial), the vortex mixing and the local flow separation, and due to this reason these are summarized by the general relationship on the diagrams of heat hydraulic efficiency. Using the quality coefficient we performed the ranging of heat exchange intensifiers of a vortex type and we arrived at a conclusion that it is reasonable to use the quality coefficient for the domain of f/f0 > 3,0 for practical applications due to the complicated determination of the ultimate values of bounding curves.
The intensification of the heat exchange is always accompanied by an increase in hydraulic losses. To estimate thermal and hydraulic efficiency of heat exchange intensifiers many criteria are used to characterize the ratio of an increase in the heat exchange to the associated losses of the pressure required for the heat carrier pumping. This scientific paper is devoted to the analysis of the following criteria of thermal and hydraulic efficiency, in particular the Reynolds analogy factor and the quality coefficient. The heat hydraulic efficiency of heat-exchange intensifiers with full and partial flow vortex and that of the intensifiers that are characterized both by the flow vortex, the vortex mixing and the flow separation have been studied. The results showed that the studied heat exchange intensifiers of a vortex type have different structural design but a rather common mechanism of heat exchange intensification due to the flow vortex (full and partial), the vortex mixing and the local flow separation, and due to this reason these are summarized by the general relationship on the diagrams of heat hydraulic efficiency. Using the quality coefficient we performed the ranging of heat exchange intensifiers of a vortex type and we arrived at a conclusion that it is reasonable to use the quality coefficient for the domain of f/f0 > 3,0 for practical applications due to the complicated determination of the ultimate values of bounding curves.
Опис
Ключові слова
теплообменное оборудование, интенсификаторы теплообмена, коэффициент качества, гидравлические потери, heat hydraulic efficiency, heat-exchange intensifiers, quality coefficient, flow vortex
Бібліографічний опис
Доник Т. В. Теплогидравлическая эффективность различных способов закрутки потока / Т. В. Доник // Вестник Нац. техн. ун-та "ХПИ" : сб. науч. тр. Темат. вып. : Энергетические и теплотехнические процессы и оборудование. – Харьков : НТУ "ХПИ". – 2015. – № 17 (1126). – С. 57-60.