Discontinuous Bifurcations under 2-DOF Vibroimpact System Moving
Дата
2016
ORCID
DOI
item.page.thesis.degree.name
item.page.thesis.degree.level
item.page.thesis.degree.discipline
item.page.thesis.degree.department
item.page.thesis.degree.grantor
item.page.thesis.degree.advisor
item.page.thesis.degree.committeeMember
Назва журналу
Номер ISSN
Назва тому
Видавець
NTU "KhPI"
Анотація
Dynamic behaviour of strongly nonlinear non-smooth discontinuous vibroimpact system isstudied. Under variation of system parameters we find the disconti nuousbi furcati onsthat are the dangerousones. It is phenomenon
unique to non-smooth systems with discontinuous right-hand side. We investigate the 2-DOF vibroimpact system by numerical parameter continuation method in conjunction with shooting and Newton-Raphson methods,
Wife simulate the impact by nonlinear contact interactive force according to Hertz's contact law. We find the discontinuous bifurcations by Floquet multipliers values. At such points set-valued Floquet multipliers cross the
unit circle by jump that istheir moduli becoming more than unit by jump. Wealso learn the bifurcation picture
change when the impact between system bodi es became the soft one due the change of system parameters, This
paper is the continuation of the previous works.
Опис
Ключові слова
vibroimpact, discontinuous, Hertz's law, bifurcation, multiplier, nonlinear, stability
Бібліографічний опис
Bazhenov V. A. Discontinuous Bifurcations under 2-DOF Vibroimpact System Moving / V. A. Bazhenov, O. S. Pogorelova, T. G. Postnikova // Nonlinear Dynamics–2016 (ND-KhPI2016) : proceedings of 5th International Conference, dedicated to the 90th anniversary of Academician V. L. Rvachev, September 27-30, 2016 = Нелінійна динаміка–2016 : тези доп. 5-ї Міжнар. конф., 27-30 вересня 2016 р. – Kharkov : NTU "KhPI", 2016. – P. 57-64.