Discontinuous Bifurcations under 2-DOF Vibroimpact System Moving

Ескіз

Дата

2016

ORCID

DOI

item.page.thesis.degree.name

item.page.thesis.degree.level

item.page.thesis.degree.discipline

item.page.thesis.degree.department

item.page.thesis.degree.grantor

item.page.thesis.degree.advisor

item.page.thesis.degree.committeeMember

Назва журналу

Номер ISSN

Назва тому

Видавець

NTU "KhPI"

Анотація

Dynamic behaviour of strongly nonlinear non-smooth discontinuous vibroimpact system isstudied. Under variation of system parameters we find the disconti nuousbi furcati onsthat are the dangerousones. It is phenomenon unique to non-smooth systems with discontinuous right-hand side. We investigate the 2-DOF vibroimpact system by numerical parameter continuation method in conjunction with shooting and Newton-Raphson methods, Wife simulate the impact by nonlinear contact interactive force according to Hertz's contact law. We find the discontinuous bifurcations by Floquet multipliers values. At such points set-valued Floquet multipliers cross the unit circle by jump that istheir moduli becoming more than unit by jump. Wealso learn the bifurcation picture change when the impact between system bodi es became the soft one due the change of system parameters, This paper is the continuation of the previous works.

Опис

Ключові слова

vibroimpact, discontinuous, Hertz's law, bifurcation, multiplier, nonlinear, stability

Бібліографічний опис

Bazhenov V. A. Discontinuous Bifurcations under 2-DOF Vibroimpact System Moving / V. A. Bazhenov, O. S. Pogorelova, T. G. Postnikova // Nonlinear Dynamics–2016 (ND-KhPI2016) : proceedings of 5th International Conference, dedicated to the 90th anniversary of Academician V. L. Rvachev, September 27-30, 2016 = Нелінійна динаміка–2016 : тези доп. 5-ї Міжнар. конф., 27-30 вересня 2016 р. – Kharkov : NTU "KhPI", 2016. – P. 57-64.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced