Evolutionary Synthesis of Dynamical Object Emulator Based on RBF Neural Network

Ескіз

Дата

1996

DOI

Науковий ступінь

Рівень дисертації

Шифр та назва спеціальності

Рада захисту

Установа захисту

Науковий керівник

Члени комітету

Назва журналу

Номер ISSN

Назва тому

Видавець

Nagoya University

Анотація

The combination of Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs) has already resulted in researchers advancing in quite a few real world applications but it is in control that this alliance yields much appreciable benefit. The paper reports a Radial Basis Function (RBF) network training technique which joins together global strategy of GAs and a local adjusting procedure typical for RBF networks. While activation function window centres and widths are processed via a "slow" numeric GA, output-layer neurone synaptic weights are defined by a "fast" analytical method. The technique allows to minimize not only the network hidden-layer size but also the pattern set required for training the adequate dynamical object neuroemulator.

Опис

Ключові слова

genetic algorithms, neural networks, RBF, modelling

Бібліографічний опис

Sergeev S. A. Evolutionary Synthesis of Dynamical Object Emulator Based on RBF Neural Network / S. A. Sergeev, K. V. Mahotilo // Procs of 1st Workshop on Soft Computing WSC-1,1996, August 19-30, On the Internet, Served by Nagoya University, pp. 31-36.

Підтвердження

Рецензія

Додано до

Згадується в