Evolutionary Synthesis of Dynamical Object Emulator Based on RBF Neural Network
dc.contributor.author | Sergeev, S. A. | en |
dc.contributor.author | Mahotilo, K. V. | en |
dc.date.accessioned | 2017-07-07T06:04:04Z | |
dc.date.available | 2017-07-07T06:04:04Z | |
dc.date.issued | 1996 | |
dc.description.abstract | The combination of Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs) has already resulted in researchers advancing in quite a few real world applications but it is in control that this alliance yields much appreciable benefit. The paper reports a Radial Basis Function (RBF) network training technique which joins together global strategy of GAs and a local adjusting procedure typical for RBF networks. While activation function window centres and widths are processed via a "slow" numeric GA, output-layer neurone synaptic weights are defined by a "fast" analytical method. The technique allows to minimize not only the network hidden-layer size but also the pattern set required for training the adequate dynamical object neuroemulator. | en |
dc.identifier.citation | Sergeev S. A. Evolutionary Synthesis of Dynamical Object Emulator Based on RBF Neural Network / S. A. Sergeev, K. V. Mahotilo // Procs of 1st Workshop on Soft Computing WSC-1,1996, August 19-30, On the Internet, Served by Nagoya University, pp. 31-36. | en |
dc.identifier.orcid | https://orcid.org/0000-0001-7081-071X | |
dc.identifier.uri | https://repository.kpi.kharkov.ua/handle/KhPI-Press/30585 | |
dc.language.iso | en | |
dc.publisher | Nagoya University | en |
dc.subject | genetic algorithms | en |
dc.subject | neural networks | en |
dc.subject | RBF | en |
dc.subject | modelling | en |
dc.title | Evolutionary Synthesis of Dynamical Object Emulator Based on RBF Neural Network | en |
dc.type | Article | en |
Файли
Контейнер файлів
1 - 1 з 1
- Назва:
- 1996_Sergeev_Evolutionary_synthesis.pdf
- Розмір:
- 681.88 KB
- Формат:
- Adobe Portable Document Format
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 11.23 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: