Computer simulation of operation plant effective modes for water disinfection by electrical discharges in gas bubbles

dc.contributor.authorBoiko, M. I.
dc.contributor.authorTatkova, K. S.
dc.date.accessioned2024-01-22T01:27:42Z
dc.date.available2024-01-22T01:27:42Z
dc.date.issued2024
dc.description.abstractPurpose. Determination by means of computer simulation of the most efficient modes of operation of the installation for water disinfection using discharges in gas bubbles, in which (modes) the amplitude of voltage pulses at the processing unit and on the layer of treated water is not less than the voltage amplitude immediately after the switching discharger. Methodology. To achieve this goal, we used computer simulation using Micro-Cap 10. We used two different electrical circuits that simulate the operation of the experimental setup in two different modes: in a mode with a restoring electrical strength of the discharge gap in the gas bubble between two adjacent voltage pulses on the discharge node and in the mode without restoring this dielectric strength. In computer simulation, we varied the following factors: the maximum simulation step, inductances, capacitances, active resistances, wave resistance of a long line, and the delay time for the operation of a spark gap simulating a discharge gap in a gas bubble. Results. Computer modeling has shown that in order to increase the voltage amplitude at the treatment unit and on the layer of treated water, it is necessary to reduce the load capacitance – the capacitance of the water layer in the treatment unit to 10 pF or less, to increase the active resistance of the water layer to 500 or more. An important factor for increasing the voltage and electric field strength in the discharge unit and, consequently, for increasing the efficiency of treated water disinfection is the discharge delay time in gas bubbles. The most rational delay time for the operation of the arrester, which is the gap in the gas bubble inside the water, under the conditions considered by us is 4–5 ns. It is with this delay time that the amplitude of voltage pulses at the node of disinfecting water treatment and on the layer of treated water is maximum, all other things being equal. Furthermore, with such a delay time this amplitude of voltage pulses significantly exceeds the voltage amplitude directly after the main high-voltage discharger, switching energy from the high-voltage capacitive storage to the processing unit through a long line filled with water. Originality. Using computer simulation, we have shown the possibility of increasing the voltage at the discharge unit of the experimental setup by 35 % without increasing the voltage of the power source. This provides a higher efficiency of microbiological disinfection of water by nanosecond discharges in gas bubbles and lower specific energy consumption. Practical value. The obtained results of computer simulation confirm the prospect of industrial application of installations using nanosecond discharges for disinfection and purification of wastewater, swimming pools and post-treatment of tap water. References 15, figures 10.
dc.description.abstractМета. Визначення за допомогою комп'ютерного моделювання найбільш ефективних режимів роботи установки для знезараження води за допомогою розрядів у газових бульках, при яких (режимах) амплітуда імпульсів напруги на вузлі обробки та на шарі води, що обробляється, не менше амплітуди напруги безпосередньо після комутуючого розрядника. Методика. Для досягнення поставленої мети ми використовували комп'ютерне моделювання за допомогою Micro-Cap 10. Ми використовували дві різні електричні схеми, що моделюють роботу експериментальної установки в двох різних режимах: в режимі з електричною міцністю, що відновлюється, розрядного проміжку в газовій бульці між двома сусідніми імпульсами напруги на розрядному вузлі та у режимі без відновлення цієї електричної міцності. При комп'ютерному моделюванні варіювалися такі фактори: максимальний крок при моделюванні, індуктивності, ємності, активні опори, хвильовий опір довгої лінії, час затримки спрацьовування розрядника, що моделює розрядний проміжок у газовому міхурі. Результати. Комп'ютерне моделювання показало, що для збільшення амплітуди напруги на вузлі обробки і на шарі води, що обробляється, слід зменшувати навантажувальну ємність – ємність шару води у вузлі обробки до 10 пФ і менше, збільшувати активний опір шару води до 500 Ом і більше. Важливим чинником збільшення напруги і напруженості електричного поля в розрядному вузлі і, отже, збільшення ефективності знезараження оброблюваної води є час затримки розряду в газових бульбашках. Найбільш раціональний час затримки спрацьовування розрядника, яким є зазор у газовій бульці всередині води, у розглянутих умовах становить 4-5 нс. Саме при такому часі затримки амплітуда імпульсів напруги на вузлі знезаражувальної обробки води і на шарі оброблюваної води є максимальною за інших рівних умов і істотно перевищує амплітуду напруги безпосередньо після основного високовольтного розрядника, що комутує енергію з високовольтного ємнісного нагромаджувача у вузол обробки. Наукова новизна. За допомогою комп'ютерного моделювання показана можливість підвищення напруги на розрядному вузлі експериментальної установки на 35 % без збільшення напруги джерела живлення, що забезпечує більш ефективне мікробіологічне знезараження води за допомогою наносекундних розрядів у газових бульбашках за малих питомих витрат енергії. Практична значущість. Отримані результати комп'ютерного моделювання підтверджують перспективу промислового застосування установок з використанням наносекундних розрядів для знезараження та очищення стічних вод, басейнів та доочищення водопровідної води. Бібл. 15, рис. 10.
dc.identifier.citationBoiko M. I. Computer simulation of operation plant effective modes for water disinfection by electrical discharges in gas bubbles / M. I. Boiko, K. S. Tatkova // Електротехніка і Електромеханіка = Electrical engineering & Electromechanics. – 2024. – № 1. – С. 43-50.
dc.identifier.doihttps://doi.org/10.20998/2074-272X.2024.1.06
dc.identifier.orcidhttps://orcid.org/0000-0002-1362-2867
dc.identifier.orcidhttps://orcid.org/0009-0006-6627-1833
dc.identifier.urihttps://repository.kpi.kharkov.ua/handle/KhPI-Press/73179
dc.language.isoen
dc.publisherНаціональний технічний університет "Харківський політехнічний інститут"
dc.subjecthigh-voltage water disinfection unit
dc.subjectdischarge unit
dc.subjectsharpening spark gap
dc.subjectdischarge in gas bubbles in water
dc.subjectdischarge delay time
dc.subjectlong electric line
dc.subjectвисоковольтна установка для знезараження води
dc.subjectрозрядний вузол
dc.subjectрозрядник, що загострює
dc.subjectрозряд у газових бульбашках у воді
dc.subjectчас запізнення розряду
dc.subjectдовга електрична лінія
dc.titleComputer simulation of operation plant effective modes for water disinfection by electrical discharges in gas bubbles
dc.typeArticle

Файли

Контейнер файлів

Зараз показуємо 1 - 1 з 1
Ескіз
Назва:
EE_2024_1_Boiko_Computer.pdf
Розмір:
1.56 MB
Формат:
Adobe Portable Document Format

Ліцензійна угода

Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
1.71 KB
Формат:
Item-specific license agreed upon to submission
Опис: