Development of innovative method of steel surface hardening by a combined chemical-thermal treatment

Ескіз

Дата

2016

Автори

ORCID

DOI

doi.org/10.21303/2461-4262.2016.00220

item.page.thesis.degree.name

item.page.thesis.degree.level

item.page.thesis.degree.discipline

item.page.thesis.degree.department

item.page.thesis.degree.grantor

item.page.thesis.degree.advisor

item.page.thesis.degree.committeeMember

Назва журналу

Номер ISSN

Назва тому

Видавець

Scientific Route, Estonia

Анотація

The aim of the article is a hardening of the surface steel layers due to the combination treatment. Samples of steel 38Cr2MoAl were hardened by complex chemical and thermal treatment such as carburizing and subsequent boriding. It was established that surface double-layer hardening for steel 38Cr2MoAl with sequential saturation with atomic carbon (during carburizing) and atomic boron (during furnace boriding) at different temperatures allowed to form a boride layer with transition zone. The obtaining transition zone can improve operational properties of machine parts and tools by micro-friability reduction of diffusion layer. An optimal mode of complex chemical-thermal treatment (CTT) was obtained for the regime, which includes carburizing at 950 °C for 2 hours, boriding at 950 °C for 2 hours, which allows to get the best value for the surface hardness of 22 GPa with a maximum overall diffusion layer 1.4 mm. Due to the technology of combined treatment we can significantly reduce treatment time compared to traditional hardening means and significantly improve product performance properties due to the transition zone between the borides and the matrix of machine elements. The technology can be used in enterprises where there is any hardening furnace without additional installation or conversion of equipment.

Опис

Ключові слова

combined treatment, carburizing, subsequent boriding, machine elements, single-phase structure, combined hardening

Бібліографічний опис

Kostyk K. Development of innovative method of steel surface hardening by a combined chemical-thermal treatment / K. Kostyk // EUREKA: Physics and engineering. – 2016. – № 6. – P. 46-52.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced