Development and research of models and software for the recommender system of consumer goods
Дата
2018
DOI
item.page.thesis.degree.name
item.page.thesis.degree.level
item.page.thesis.degree.discipline
item.page.thesis.degree.department
item.page.thesis.degree.grantor
item.page.thesis.degree.advisor
item.page.thesis.degree.committeeMember
Назва журналу
Номер ISSN
Назва тому
Видавець
НТУ "ХПІ"
Анотація
There have been proposed investigation of the problem of creating recommendations with technical description for building the Recommender System of consumer goods with help of modern algorithms, approaches, principles and contains the investigation of the most popular methods. It was defined, that the deployment of Recommender Systems is one of the rapidly developing areas for improving applied information technolog ies, tools for automatic generating offers service based on the investigation of the personal needs and profile of customers. It was investigated, that such systems have started to play a very important role in the fast growing Internet, as they help users to navigate in a large amount of information, because users are not able to analyze a large amount of information, because it is very difficult and takes a lot of time and effort, but due to such systems, namely Recommender Systems that are able to filter a large amount of information, and provide for users the information and recommendations their likes the problem can be solved and instead of providing the static information, when users search and, perhaps, buy products, Recommender Systems increase the degree of interactivity to expand the opportunities provided to the user. It was defined, that Recommendation systems form recommendations independently for each specific user based on past purchases and searches, and also on the basis of the behavior of other users with help of recommendation services, which collect different information about a person using several methods and at the same time all systems are shared. An overview of content-based, collaborative filtering and hybrid methods was performed. An overview of Alternating Least Squares and Singular Value Decomposition recommendation algorithms was performed. The design of the Recommender System of consumer goods software component was described. The main features of software implementation and programming tools for the system which is being developed were explained. The conclusions about the problems of Recommender Systems and the review of existing algorithms were made.
Запропоновано дослідження проблеми створення рекомендацій, з технічним описом для побудови рекомендаційної системи для вибору товарів масового вжитку за допомогою сучасних алгоритмів, підходів, принципів і містить дослідження найбільш популярних методів. Було визначено, що впровадження рекомендаційних систем є однією з областей, які швидко розвиваються для вдосконалення прикладних інформаційних технологій, інструментів для автоматичного генерування пропозицій, заснованих на дослідженні особистих потреб і профілю клієнтів. Було досліджено, що такі системи почали грати дуже важливу роль в швидко зростаючому Інтернеті, оскільки вони допомагають користувачам орієнтуватися у великій кількості інформації, користувачі не можуть аналізувати великий обсяг інформації, адже це дуже складно і також вимагає багато часу і зусиль, але завдяки рекомендаційним системам, які можуть фільтрувати великий обсяг інформації і надавати користувачам інформацію і рекомендації, які їм подобаються, проблема може бути вирішена і замість надання статичної інформації, коли користувачі шукають, і можливо, купують продукти, такі системи збільшують ступінь інтерактивності для розширення можливостей, що надаються користувачеві. Було визначено, що рекомендаційні системи формують рекомендації самостійно для кожного конкретного користувача на основі минулих покупок і пошуків, а також на основі поведінки інших користувачів за допомогою служб рекомендацій, які збирають різну інформацію про людину, що використовує кілька методів, і в той же час всі системи є загальними. Було проведено огляд методів фільтрації на основі контенту, спільної фільтрації і гібридних методів. Було виконано огляд алгоритмів альтернативних найменших квадратів і сингулярного розкладання. Описана конструкція рекомендаційної системи програмного забезпечення для вибору товарів масового вжитку. Зроблено пояснення деяких можливостей програмної реалізації і інструментів програмування для розроблюваної системи. Зроблено висновки про проблеми рекомендаційних систем і огляд існуючих алгоритмів.
Запропоновано дослідження проблеми створення рекомендацій, з технічним описом для побудови рекомендаційної системи для вибору товарів масового вжитку за допомогою сучасних алгоритмів, підходів, принципів і містить дослідження найбільш популярних методів. Було визначено, що впровадження рекомендаційних систем є однією з областей, які швидко розвиваються для вдосконалення прикладних інформаційних технологій, інструментів для автоматичного генерування пропозицій, заснованих на дослідженні особистих потреб і профілю клієнтів. Було досліджено, що такі системи почали грати дуже важливу роль в швидко зростаючому Інтернеті, оскільки вони допомагають користувачам орієнтуватися у великій кількості інформації, користувачі не можуть аналізувати великий обсяг інформації, адже це дуже складно і також вимагає багато часу і зусиль, але завдяки рекомендаційним системам, які можуть фільтрувати великий обсяг інформації і надавати користувачам інформацію і рекомендації, які їм подобаються, проблема може бути вирішена і замість надання статичної інформації, коли користувачі шукають, і можливо, купують продукти, такі системи збільшують ступінь інтерактивності для розширення можливостей, що надаються користувачеві. Було визначено, що рекомендаційні системи формують рекомендації самостійно для кожного конкретного користувача на основі минулих покупок і пошуків, а також на основі поведінки інших користувачів за допомогою служб рекомендацій, які збирають різну інформацію про людину, що використовує кілька методів, і в той же час всі системи є загальними. Було проведено огляд методів фільтрації на основі контенту, спільної фільтрації і гібридних методів. Було виконано огляд алгоритмів альтернативних найменших квадратів і сингулярного розкладання. Описана конструкція рекомендаційної системи програмного забезпечення для вибору товарів масового вжитку. Зроблено пояснення деяких можливостей програмної реалізації і інструментів програмування для розроблюваної системи. Зроблено висновки про проблеми рекомендаційних систем і огляд існуючих алгоритмів.
Опис
Ключові слова
alternating least squares method, singular value decomposition method, software component, recommendations, метод альтернативних найменших квадратів, метод сингулярного розкладу, програмний компонент
Бібліографічний опис
Development and research of models and software for the recommender system of consumer goods / A. O. Turetskyi [et al.] // Вісник Національного технічного університету "ХПІ". Сер. : Системний аналіз, управління та інформаційні технології = Bulletin of the National Technical University "KhPI". Ser. : System analysis, control and information technology : зб. наук. пр. – Харків : НТУ "ХПІ", 2018. – № 21 (1297). – С. 70-76.