Метод расчета дробных интегралов с динамической коррекцией ошибки для микропроцессорных систем управления
Дата
2019
Автори
DOI
doi.org/10.20998/2079-8024.2019.16.06
item.page.thesis.degree.name
item.page.thesis.degree.level
item.page.thesis.degree.discipline
item.page.thesis.degree.department
item.page.thesis.degree.grantor
item.page.thesis.degree.advisor
item.page.thesis.degree.committeeMember
Назва журналу
Номер ISSN
Назва тому
Видавець
Национальный технический университет "Харьковский политехнический институт"
Анотація
Целью работы является разработка численного метода расчета дробного интеграла заданного порядка с минимизированной ошибкой при ограниченных объемах памяти данных и быстродействия для микропроцессорных систем управления. Уменьшение статической и динамической погрешности в десятки раз обеспечивается аппроксимацией старших коэффициентов разложения дробного интеграла вряд геометрической прогрессией и динамической компенсацией возникающей на первом этапе ошибки с помощью адаптивного корректирующего
модуля
The purpose of the work is to develop a numerical method for calculating a fractional integral with a minimized error with limited data memory. Control systems with a fractional astaticism for many technical objects provide the best dynamic and static indicators. Controller in such systems include one or more units that perform the operation of fractional integration and/or differentiation of the input signal. To implement such control systems based on single-chip microprocessors, it is necessary to solve the problem of calculating a fractional integral by numerical methods, taking into ac-count the limited arrays of data and processor speed. The proposed solution is based on a combination of two methods. First, the calculation of the fractional integral, carried out by approximating the higher expansion coefficients in a series by a geometric progression, allows the use of memory volumes corresponding to the capabilities of the selected processor. Secondly, the dynamic compensation of the error arising at the first stage is car -ried out using an adaptive correction module. Despite the complication of the algorithm, this method of calculation reduces the errortenfold in both transient and steady-state processes, the properties of thesynthesized calculation block correspond exactly to the properties of a fractional integral of a given order at frequencies from 0 to the maximum necessary in the control system. Dynamic error compensation reduces the required memory capacity for storing arrays of coefficients and input history and requires significantly less processor time to calculate the controller signal. As a result, a quantization period of tens of microseconds can be obtained, which makes it possible to implement fractional integral-differentiating controllers based on widely used modern processors and apply fractional-integral number methods to synthesize high-speed automatic control systems, such aselectric drives with asynchronous motors, engines with series excitation.
The purpose of the work is to develop a numerical method for calculating a fractional integral with a minimized error with limited data memory. Control systems with a fractional astaticism for many technical objects provide the best dynamic and static indicators. Controller in such systems include one or more units that perform the operation of fractional integration and/or differentiation of the input signal. To implement such control systems based on single-chip microprocessors, it is necessary to solve the problem of calculating a fractional integral by numerical methods, taking into ac-count the limited arrays of data and processor speed. The proposed solution is based on a combination of two methods. First, the calculation of the fractional integral, carried out by approximating the higher expansion coefficients in a series by a geometric progression, allows the use of memory volumes corresponding to the capabilities of the selected processor. Secondly, the dynamic compensation of the error arising at the first stage is car -ried out using an adaptive correction module. Despite the complication of the algorithm, this method of calculation reduces the errortenfold in both transient and steady-state processes, the properties of thesynthesized calculation block correspond exactly to the properties of a fractional integral of a given order at frequencies from 0 to the maximum necessary in the control system. Dynamic error compensation reduces the required memory capacity for storing arrays of coefficients and input history and requires significantly less processor time to calculate the controller signal. As a result, a quantization period of tens of microseconds can be obtained, which makes it possible to implement fractional integral-differentiating controllers based on widely used modern processors and apply fractional-integral number methods to synthesize high-speed automatic control systems, such aselectric drives with asynchronous motors, engines with series excitation.
Опис
Ключові слова
дробное интегрирование, дробное дифференцирование, быстрый алгоритм расчета, fractional integration, fractional differentiation, fast calculation algorithm
Бібліографічний опис
Бушер В. В. Метод расчета дробных интегралов с динамической коррекцией ошибки для микропроцессорных систем управления / В. В. Бушер // Вісник Національного технічного університету "ХПІ". Сер. : Проблеми автоматизованого електропривода. Теорія і практика = Bulletin of the National Technical University "KhPI". Ser. : Problems of automated electrodrive. Theory and practice : зб. наук. пр. – Харків : НТУ "ХПІ", 2019. – № 16. – С. 28-31.