Кафедра "Інтегровані технології машинобудування ім. М. Ф. Семка"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/3115
Офіційний сайт кафедри http://web.kpi.kharkov.ua/cutting
Від 2005 року кафедра має назву "Інтегровані технології машинобудування" ім. М. Ф. Семка, попередня назва – "Різання матеріалів та різальні інструменти".
Кафедра заснована в 1885 році. Свої витоки вона веде від кафедри механічної технології (у подальшому – кафедра загального машинобудування, кафедра холодної обробки матеріалів, кафедра різання матеріалів та різальних інструментів).
Засновником і першим завідувачем кафедри був фундатор технологічної підготовки інженерів-механіків в ХТПІ Костянтин Олексійович Зворикін.
Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут і є провідним науково-дослідним і освітнім центром України в галузі високих інтегрованих технологій у машинобудуванні. У науковій школі кафедри різання матеріалів підготовлені 18 докторів технічних наук і 104 кандидата технічних наук.
У складі науково-педагогічного колективу кафедри працюють: 3 доктора технічних наук, 9 кандидатів технічних наук; 3 співробітника мають звання професора, 6 – доцента.
Переглянути
Результати пошуку
Документ Main technological factors determining the efficiency and quality of the vibration process(Національний технічний університет "Харківський політехнічний інститут", 2022) Mitsyk, A. V.; Fedorovich, V. A.; Grabchenko, A. I.The factors that determine the efficiency and quality of vibration treatment are indicated. Characteristic cases of interaction of abrasive granules with the processed surface are noted. The influence of the hardness of the processed part material and the shape of its surface, as well as the influence of chemically active solutions on the efficiency and quality of vibration processing, is substantiated. The characteristics of abrasive granules and their volume ratio with the processed parts are given. It is indicated that the underestimation of the possibilities of vibration processing technologies is explained by their insufficient studies. It has been established that vibration processing, depending on the characteristics and composition of the processing medium, is a mechanical or mechanochemical removal of the smallest particles of metal or its oxides and plastic deformation of microroughness due to mutual collisions of the medium granules with the processed surface, caused by vibrations of the reservoir in which the processing medium and, the processed parts are placed. It is noted that, according to the classification, vibration treatment refers to mechanical processing methods and, in particular, to the group of mechanical-chemical processing methods or to combined methods when chemically active solutions are introduced into the working medium, It is also noted that vibration treatment refers to dynamic, and for technological purposes – to dimensionless processing methods, according to the type of tool used - to the group of processing methods with a free abrasive. It has beene stablished that the efficiency of vibration processing depends on the oscillation modes of the vibrating machine, the mass of the processed parts and abrasive granules, the hardness of the parts material and the shape of their treated surfaces, the characteristics of the abrasive medium, the volume ratio of the parts and abrasive granules, as well as on the composition of the chemically active solution. The characteristic cases of interaction of abrasive granules with the processed surface are given. The situations of the highest processing productivity for performing the operations of vibration grinding, vibration polishing, washing and descaling have been established. It is noted how the hardness of the processed part and the shape of their surface affects the performance and quality of vibration processing operations. The characteristics of the working medium, which affects the efficiency and quality of vibration treatment, are given, including the influence of grain size and hardness of the material of abrasive granules. The volume ratios of abrasive and processed parts are considered. The types of actions on the vibration treatment processes are given.Документ Methodology for developing an expert system for the grinding of superhard materials(Національний технічний університет "Харківський політехнічний інститут", 2022) Fedorovich, V. A.; Pyzhov, Ivan; Ostroverkh, Y.; Pupan, L. I.; Garachenko, Ya.An expert system of the grinding process has been developed, which makes it possible to predict and optimize the process of defect-free processing of both existing and newly created superhard materials. The expert system consists oftwo interconnected modules - theoretical and experimental. The theoretical module ofthe expert system allows, at a given level of significance, to determine the values of the output indicators and the kinetics of their change in the process of adaptability, depending on the physical and mechanical properties of the interacting materials and processing conditions. The experimental module of the expert system allows you to coordinate and correct the results of theoretical calculations when determining the optimal grinding and operating conditions for processing various grades of superhard materials. When optimizing the sharpening process of a blade tool, processing efficiency, consumption of diamond wheels, cost price and various quality indicators of its cutting elements can be selected as a criterion. The use of the expert system significantly reduces the amount of expensive and laborious researches in determining the optimal processing conditions for various grades of superhard materials (SHM), including newly created ones.Документ Methodology of definition of optimal diamond wheel characteristics at stages of production and operation(Національний технічний університет "Харківський політехнічний інститут", 2022) Fedorovich, V. A.; Pyzhov, I.; Ostroverkh, Y.The problem of increase of effectiveness of manufacturing and application of diamondabrasive tool is still a challenging research subject. Development of computer facilities opens up possibilities for development of three-dimensional (3D) methodology of integrated study of the interconnected processes of manufacturing and exploitation of diamond-abrasive tool and improvement of the single-point tool reliability at the stage of tool sharpening. Creation of the methodology of 3D simulation of processes of diamond-abrasive tool sintering and processes of machining allows to increase essentially validity of the obtained results, to reduce volume of experimental researches for definition of optimum grinding conditions and to develop new technologies, tools and equipment. The developed methodology gives the opportunity to create expert system for assignment of rational characteristics of diamond wheels and grinding modes. The proposed 3D methodology to research processes of diamond-abrasive machining covers all basic stages of life cycle of the tool, including processes of manufacturing and exploitation. Subsystem of computer-generated determination of conditions of manufacturing of defect-free diamond wheels and grinding of superhard materials on the base of 3D simulation of deflected mode of elements of the "SHM crystal grain – metal phase – grain –bond" system at process of diamond wheel sintering and grinding is developed.Документ Interaction of the abrasive medium with the treated surface and the process of metal removal during vibration treatment in the presence of a chemically active solution(Національний технічний університет "Харківський політехнічний інститут", 2021) Fedorovich, V. A.; Grabchenko, A. I.; Mitsyk, A. V.Interaction of working medium granules with the processed surface of the part is considered. It is noted that the processing methods are characterized by the dynamic interact ion of the abrasive medium with the processed surface. It is indicated that during vibration treatment there is an impact contact of the abrasive granule with the surface of the part, which leads to the formation of characteristic traces during the formation of the surface relief. The types of impact of abrasive grains of working medium granules on the surface of the processed part are identified. It is indicated that the effect of abrasive grains depends on the geometric parameters of the tops of the grains and the working contour of the granule as a whole. The alternation of the operation of abrasive grains in the connection with the nature of the motion of the granule over the surface of the part is shown. The interaction of surfaces of bodies during vibration treatment is considered. The distinctive features of the vibration treatment method from other analogs are indicated. The conditions for the formation of the surface layer of the part during vibration processing are given. The analysis of the mechani cal-physicochemical model of the micro-cutting process in the presence of a chemically active solution is carried out and a comparison of the intensity of technologies for vibration treatment of steel parts is given.Документ Modeling the influence of metal phase in diamond grains on self-sharpening of grinding wheels on ceramic bonds(Національний технічний університет "Харківський політехнічний інститут", 2021) Fedorovich, V. A.; Fedorenko, D.; Pyzhov, Ivan; Ostroverkh, Y.The article presents the results of theoretical studies using finite element modeling, which made it possible to determine the rational characteristics of diamond wheels based on ceramic and polymer bonds. The effect of the parameters of the diamond-bearing layer on the change in its stress-strain state in the process of microcutting of hard alloys and superhard materials has been studied. It is established that the determining factor in the occurrence of critical stresses during grinding is the temperature in the cutting area, the increase of which in the presence of metal phase inclusions in diamond grains with high values of thermal expansion coefficient can lead to destructive stresses in grains and, consequently, their premature destruction. It is advisable to use diamond grains with a minimum content of metal phase and the use in the manufacture of synthetic diamonds solvent metals with a low value of this coefficient, which will significantly increase the use of potentially high resource diamond grains.Документ The effect of a shock wave in an oscillating working medium during vibration finishing-grinding processing(Національний технічний університет "Харківський політехнічний інститут", 2020) Mitsyk, A. V.; Fedorovich, V. A.; Grabchenko, A. I.The propagation of a force pulse in a working medium is considered as in a pseudo-gas, that is, the speed of sound. The movement of parts in the working medium is determined. The mechanism of the appearance of a weak shock wave, that is, a jump of the compaction in a pseudo-gas from abrasive granules is considered. The nature of the interaction of the surfaces of vibrating processed parts with granules of the working medium has been established. The characteristic of the Hugoniot adiabatic curve for pseudo-gas from granules of the working medium is given. The influence of the occurrence of a shock wave on the vibration treatment process is determined. The adequacy of theoretical and experimental studies has been established.Документ 3D methodology of research of diamond-abrasive machining process(Національний технічний університет "Харківський політехнічний інститут", 2020) Grabchenko, A. I.; Fedorovich, V. A.; Pyzhov, I.; Ostroverkh, Y.; Kozakova, N.Subsystem of computer-generated determination of conditions of manufacturing of defect-free diamond wheels and grinding of superhard materials on the base of 3D simulation of deflected mode of elements of the "SHM crystal grain – metal phase – grain – bond" system at process of diamond wheel sintering and grinding is developed.Документ Increase of efficiency of diamond grinding superhard of materials(Національний технічний університет "Харківський політехнічний інститут", 2020) Grabchenko, A. I.; Fedorovich, V. A.; Pyzhov, I.; Ostroverkh, Y.The analysis of algorithm of expert system of process of diamond grinding superhard of materials (SHPM) is given. For realization of the offered expert system the ways of grinding with the combined control of parameters of a working surface of diamond circles are developed.The designed ways of superhard polycrystallic material diamond grinding basing on control of a grinding wheel surface with usage of simulation of destruction processes of the system "polycrysta-grain–wheel bond" considered.Документ Theoretical reasoning for efficient use of micro powders in diamond wheels on metallic bonds(Національний технічний університет "Харківський політехнічний інститут", 2020) Grabchenko, A. I.; Fedorovich, V. A.; Pyzhov, I.; Ostroverkh, Y.; Kozakova, N.The article presents theoretical researches of improving the manufacturing process and the subsequent using of grinding wheels from diamond micro powders of diamond on currentcarrying bonds, which allow to reduce the specific consumption of synthetic diamonds in the finishing operations of processing polycrystalline superhard materials It is proposed to use diamond grains with a metal coating in an abrasive tool. 3D analysis of the stress-strain state “diamond grain-coating-bond” system showed ways to reduce the probability of destruction of diamond grains during sintering of the diamond-carrying layer by changing the thickness of the coating, the elastic modulus of its material and other parameters. The calculated low values of the concentration of coated diamond grains provide a significant reduction in their specific consumption in the processing of polycrystalline superhard materials.