Кафедра "Геометричне моделювання та комп'ютерна графіка"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/3172
Офіційний сайт кафедри http://web.kpi.kharkov.ua/gmkg
Дисципліни графічної підготовки "Нарисна геометрія", "Машинобудівне креслення" і "Малювання" викладались з моменту заснування НТУ “ХПІ” – з 1885 року. Першим лектором курсу "Нарисна геометрія" був професор Костянтин Олексійович Андрєєв. Кафедра "Геометричне моделювання та комп'ютерна графіка" заснована у 1930 році (первісна назва – кафедра "Нарисна геометрія і машинобудівне креслення", першим завідувачем якої став Андрєєв Віктор Лаврентієвіч). У подальшому змінювала назви на "Нарисна геометрія та графіка", "Нарисна геометрія та інженерна графіка").
Кафедра "Геометричне моделювання та комп’ютерна графіка" здійснює загальну інженерну графічну підготовку студентів з 1 по 5 курс. Підготовка фахівців орієнтована на підприємства, які створюють, обслуговують, використовують системи комп’ютерної графіки; підприємства медіа-спрямованості та інтернет-спрямованості.
Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".
p align="justify">У складі науково-педагогічного колективу кафедри працюють: 2 доктора технічних наук, 10 кандидатів технічних наук; 2 співробітника мають звання професора, 9 – доцента.Переглянути
Результати пошуку
Документ Узагальнений підхід до вибіркового пошуку об'єктів на зображеннях(Мелітопольський державний педагогічний університет ім. Богдана Хмельницького, 2023) Власенко, Володимир Олександрович; Дашкевич, Андрій Олександрович; Воронцова, Дар'я Володимирівна; Охотська, Олена ВадимівнаРоботу присвячено процесу дослідження та розробці власного підходу для розпізнавання обʼєктів на зображеннях у випадках вибіркового пошуку. У сучасному світі у сфері комп’ютерного зору та обробки зображень, розпізнавання об’єктів є одним із найважливіших напрямків досліджень. Застосування нейронних мереж, таких як YOLO (You Only Look Once) та R-CNN (Region-based Convolutional Neural Network), виявилося дуже ефективним у вирішенні цієї задачі. Ці алгоритми здатні знаходити об’єкти на зображеннях та повертати обмежувальні рамки, які точно описують ці об’єкти. Однак, у деяких випадках, коли ми працюємо з інтерактивними програмами, наприклад, обираємо об’єкт, клацаючи або торкаючись розпізнаної області, виникає проблема вибору правильного об’єкта та його обмежувальної рамки. Це може вплинути на точність визначення обраного об’єкта в контексті вибіркового пошуку. Виникає необхідність знайти таку область пошуку, яка дозволить нам належним чином визначити обраний об’єкт, особливо у випадку перетину обмежувальних рамок. Ефективний підхід до визначення розміру області пошуку та візуалізація процесу дослідження можуть покращити точність і швидкість вибору об’єктів, забезпечуючи більш зручний та ефективний пошук об’єктів на зображеннях. Ми пропонуємо вирішення проблеми перетину обмежувальних рамок, що виникає при роботі нейронних мереж типу YOLO та R-CNN, розробивши метод оцінки оптимального розміру області пошуку, який дозволить знайти відповідний об’єкт та його обмежувальну рамку та пропонуємо узагальнений підхід до візуалізації процесу дослідження, що дозволить наочно представити перекриття обмежувальних рамок та полегшить вибір оптимального об’єкта. Для підтвердження ефективності запропонованого методу ми проводимо експерименти на відповідному наборі даних та порівнюємо їх. Результати таких досліджень можуть мати значний практичний вплив на розробку систем розпізнавання об’єктів і покращення їх функціональності в цілому. Майбутні дослідження можуть фокусуватися на розширенні набору даних для випадків вибіркового пошуку, включаючи різні сценарії перекриття обмежувальних рамок та об’єктів з різною формою та розмірами.Документ Сигнатура точечного множества и алгоритм классификации на её основе(Национальный технический университет "Харьковский политехнический институт", 2018) Дашкевич, Андрей АлександровичНа данный момент существует большое количество задач по автоматизированной обработке многомерных данных, например, классификация, кластеризация, прогнозирование, задачи управления сложными объектами. Соответственно, возникает необходимость в развитии математического и алгоритмического обеспечения для решения возникающих задач. Целью исследования является развитие алгоритмов классификации точечных множеств на основе их пространственного распределения. В работе предлагается рассматривать данные как точки в многомерном метрическом пространстве. В работе рассмотрены подходы к описанию характеристик точечных множеств в пространствах высокой размерности и предлагается подход к описанию точечного множества на основе сигнатур, которые представляют собой характеристику заполненности точечного множества на основе расширения понятия пространственного хеширования. Обобщенный подход к вычислению сигнатур точечных множеств заключается в разбиении пространства, занимаемого множеством на регулярную сетку с помощью метода пространственного хеширования, вычисления геометрических характеристик множества в полученных ячейках и определения наиболее заполненных ячеек по каждому из пространственных измерений. Предлагается новый подход к классификации на основе сигнатур множества, который заключается в нахождении сигнатур для точек с известным значением принадлежности к некоторым классам, а для новых точек вычисляется расстояние от хеша точки до сигнатуры каждого из известных множеств, на основе чего определяется наиболее вероятный класс точки. В качестве используемых метрик предлагаются Евклидово расстояние и метрика городских кварталов. В работе проведён сравнительный анализ используемых метрик с точки зрения точности классификации. Преимуществами предложенного подхода являются простота вычислений и высокая степень точности классификации для равномерно распределенных точек. Представленный алгоритм реализован в виде программного приложения на языке Python с использованием библиотеки NumPy. Также рассмотрены варианты использования предложенного подхода для задач с не числовыми данными, такими как строковые и булевы значения. Для таких данных предложено использовать метрику Хэмминга, проведённые эксперименты показали работоспособность алгоритма для таких типов данных.Документ Алгоритм поиска устойчивых соответствий пар ключевых точек на изображениях и картах глубины(НТУ "ХПИ", 2019) Дашкевич, Андрей Александрович; Воронцова, Дарья Владимировна; Скоробогатько, Никита ВалентиновичРазвитие эффективных методов компьютерного зрения постоянно находится в центре исследований многих учёных, так как они дают возможность повысить скорость и эффективность решения задач в различных отраслях промышленности: картография, робототехника, системы виртуальной и дополненной реальности, системы автоматизированного проектирования. Значительную перспективу имеют современные исследования, методы и алгоритмы решения задач стереозрения, распознавания образов, в том числе те, которые работают в режиме реального времени. Одной из важных задач стереозрения является задача сопоставления карт глубины для получения трёхмерной модели сцены, но есть некоторые нерешенные вопросы процесса сопоставления карт глубин для крупномасштабных сцен окружающей среды, полученных беспилотными летательными аппаратами, а именно: низкое разрешение по глубине из-за большого расстоянию сцены от камеры, и проблема наличия шума вследствие дефектов камеры. Указанные проблемы затрудняют обнаружение ключевых точек на изображениях для их дальнейшего сопоставления. В представленной работе предлагается подход к определению ключевых точек на смежных картах глубин на основе поиска ключевых точек, находящихся в близких областях пространства параметров. Подход базируется на поиске множества ключевых точек в двух последовательных видеокадрах и нахождении среди них пар точек таких, что каждая точка пары соответствует одной и той же точке сцены на входном изображении. Соответствующие пары ключевых точек, которые локализованы детектором признаков, могут быть ложно-положительными. Предложенный алгоритм может устранить такие пары точек путём определения преобладающего направления движения ключевых точек в локальных участках изображения, а также алгоритм даёт возможность определения центра смещение точки обзора камеры, чем обеспечивает лучшую оценку положения съёмочного оборудования. Результаты работы реализованы в виде программного приложения и протестированы на видеоматериалах, полученных беспилотным летательным средством.Документ Снижение размерности данных на основе разбиения пространства на регулярную сетку(НТУ "ХПІ", 2018) Дашкевич, Андрей АлександровичПредлагается подход к решению задачи классификации точечных множеств на основе снижения размерности данных и разбиения пространства на регулярную сетку. Вводится понятие гиперкуба как способ представления точечных множеств. Предложен подход к снижению размерности на основе сигнатуры точечного множества. Разработанный метод даёт возможность исключить из дальнейшей классификации множество координатных осей при повышении точности классификации и уменьшении количества необходимых вычислений. Проведённые эксперименты показали работоспособность подхода на данных больших размерностей. Преимуществом подхода является быстрое определение избыточных координатных осей для произвольного набора исходных классов.Документ Анализ пространственного распределения точечных множеств на основе алгоритма пространственного хеширования(НТУ "ХПИ", 2018) Дашкевич, Андрей Александрович; Шоман, Ольга ВикторовнаВ работе предложен алгоритм для определения меры пространственного распределения точечных множеств на основе алгоритма пространственного хеширования. В работе вводится расширение меры пространственной плотности точечного множества на трехмерное пространство. Разработанный подход позволяет выявлять корреляцию двух точечных множеств как скалярного произведения распределения плотностей индексов ближайшего соседства, что дает возможность решения задачи сегментации точечных множеств.