Кафедра "Автоматизація та кібербезпека енергосистем"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7548

Офіційний сайт кафедри http://web.kpi.kharkov.ua/avkib

З 2017 р. має назву "Автоматизація та кібербезпека енергосистем", попередня назва – "Автоматизація енергосистем.

Кафедра "Автоматизація енергосистем" утворена у 2003 році, як така, що відділилася від кафедри "Електричні станції". Першим завідувачем кафедри був Кизилов Володимир Ульянович – перший в історії університету, хто був удостоєний почесного звання "Заслужений винахідник України".

Кафедра входить до складу Навчально-наукового інституту енергетики, електроніки та електромеханіки. Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють 4 доктора технічних наук та 4 кандидата технічних наук; 4 співробітника мають звання професора, 4 – доцента

Переглянути

Результати пошуку

Зараз показуємо 1 - 4 з 4
  • Ескіз
    Документ
    Calculation of electric field distribution in the vicinity of power transmission lines with towers and unmanned aerial vehicles presence
    (Інститут електродинаміки НАН України, 2018) Rezinkina, M. M.; Sokol, Yevgen I. ; Gryb, O. G.; Bortnikov, A. V.; Lytvynenko, S. A.
    The results of mathematical modeling of the electric field of overhead power transmission lines (TL) are presented taking into account presence of towers and unmanned aerial vehicles (UAVs) for various cases of the TL lines layout: vertical, horizontal and triangular. Numerical calculations of electric field (EF) were performed using finite integration technique and uniaxial perfectly matched layer. In this case the TL lines under the electrical potential were replaced by linear charges located on their axes. The obtained numerical results for the case of towers and UAV absence were compared with the analytical solutions, which showed coincidence of the EF strength moduli within the range of the assigned accuracy of the numerical calculations– 3%. The results of calculations are necessary to determine the flight height of UAVs, safe from the point of view of electromagnetic compatibility of the on-board electronics to influence of the TL EF and TL towers.
  • Ескіз
    Документ
    A method of complex automated monitoring of Ukrainian power energy system objects to increase its operation safety
    (NTU "KhPI", 2016) Sokol, Yevgen I. ; Rezinkina, M. M.; Gryb, O. G.; Vasilchenko, V. I.; Zuev, A. A.; Bortnikov, A. V.; Sosina, E. V.
    The paper describes an algorithm of the complex automated monitoring of Ukraine’s power energy system, aimed at ensuring safety of its personnel and equipment. This monitoring involves usage of unmanned aerial vehicles (UAVs) for planned and unplanned registration status of power transmission lines (PTL) and high voltage substations (HVS). It is assumed that unscheduled overflights will be made in emergency situations on power lines. With the help of the UAV, pictures of transmission and HVS will be recorded from the air in the optical and infrared ranges, as well as strength of electric (EF) and magnetic (MF) fields will be measured along the route of flight. Usage specially developed software allows to compare the recorded pictures with pre-UAV etalon patterns corresponding to normal operation of investigated transmission lines and the HVSs. Such reference pattern together with the experimentally obtained maps of HVS’s protective grounding will be summarized in a single document – a passport of HVS and PTL. This passport must also contain the measured and calculated values of strength levels of EF and MF in the places where staff of power facilities stay as well as layout of equipment, the most vulnerable to the effects of electromagnetic interference. If necessary, as part of ongoing monitoring, recommendations will be given on the design and location of electromagnetic screens, reducing the levels of electromagnetic interference as well as on location of lightning rods, reducing probability lightning attachment to the objects. The paper presents analytic expressions, which formed the basis of the developed software for calculation of the EF strength in the vicinity of power lines. This software will be used as a base at UAV navigation along the transmission lines, as well as to detect violations in the transmission lines operation. Comparison of distributions of EF strength calculated with the help of the elaborated software with the known literature data has been presented also. The difference between the proposed method of monitoring and the existing methods is full automation of the complex control of a number of parameters characterizing the state of the external power grid facilities, as well as its basic electrical parameters. This will be possible due to usage of specially developed software for recognition of optical and infrared images, as well as pictures of lines of equal EF and MF strength.
  • Ескіз
    Документ
    Numerical computation of electric fields in presence of curvilinear interface between conductive and non-conductive media
    (NTU "KhPI", 2016) Sokol, Yevgen I. ; Rezinkina, M. M.; Sosina, E. V.; Gryb, O. G.
    Purpose. To elaborate a method of electric field numerical calculation in systems with curved boundaries between conductive and non-conductive media at final volume method usage and application of the rectangular grids. Methodology. At electric field calculation in quasi-stationary approximation, potential of the whole conductive object (rod) is constant. At final difference scheme writing, presence of the curved part of the boundary between conducting and non-conducting media has been taking into account as follows. It was supposed that curved section complements the closed loop on which integration of the solvable equation is done instead of a straight section which extends within a conducting medium. Usage of this approach allows taking into account square of the curved sections of the boundary and distance between surface of non conductive medium and nearest nodes of the computational grid. Results. Dependence of the maximum electric field intensity on the height and radius of curvature peaks rods has been got with the help of calculations. As a result, a polynomial approximation for the analytical expression of the external electric field intensity, upon which application to the conductive object of a certain height and radius of curvature of its top, corona discharges will develop.
  • Ескіз
    Документ
    Synthesis of ferroceramics for electromagnetic shock waves generators by vacuum aerosol deposition method
    (STC "Institute for Single Crystals", 2016) Rezinkin, O. L.; Rezinkina, M. M.; Gryb, O. G.
    Experimental bench and regimes of aerosol deposition at room temperature in vacuum of the fine grained ferroelectric layers with thickness of several hundred microns (the grains' size is less than 1 μm) and general formula BaO-SrO-TiO2 have been described. The results of experimental investigations of electrical physical characteristics of the obtained samples have been presented. It is shown that electric breakdown strength of the obtained ferroelectric layers exceeds in 1.4-2.5 times the electric breakdown strength of the similar samples made by the hot synthesis technology.