Кафедра "Автоматизація та кібербезпека енергосистем"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7548
Офіційний сайт кафедри http://web.kpi.kharkov.ua/avkib
З 2017 р. має назву "Автоматизація та кібербезпека енергосистем", попередня назва – "Автоматизація енергосистем.
Кафедра "Автоматизація енергосистем" утворена у 2003 році, як така, що відділилася від кафедри "Електричні станції". Першим завідувачем кафедри був Кизилов Володимир Ульянович – перший в історії університету, хто був удостоєний почесного звання "Заслужений винахідник України".
Кафедра входить до складу Навчально-наукового інституту енергетики, електроніки та електромеханіки. Національного технічного університету "Харківський політехнічний інститут".
У складі науково-педагогічного колективу кафедри працюють 4 доктора технічних наук та 4 кандидата технічних наук; 4 співробітника мають звання професора, 4 – доцента
Переглянути
Результати пошуку
Документ Calculation of electric field distribution in the vicinity of power transmission lines with towers and unmanned aerial vehicles presence(Інститут електродинаміки НАН України, 2018) Rezinkina, M. M.; Sokol, Yevgen I. ; Gryb, O. G.; Bortnikov, A. V.; Lytvynenko, S. A.The results of mathematical modeling of the electric field of overhead power transmission lines (TL) are presented taking into account presence of towers and unmanned aerial vehicles (UAVs) for various cases of the TL lines layout: vertical, horizontal and triangular. Numerical calculations of electric field (EF) were performed using finite integration technique and uniaxial perfectly matched layer. In this case the TL lines under the electrical potential were replaced by linear charges located on their axes. The obtained numerical results for the case of towers and UAV absence were compared with the analytical solutions, which showed coincidence of the EF strength moduli within the range of the assigned accuracy of the numerical calculations– 3%. The results of calculations are necessary to determine the flight height of UAVs, safe from the point of view of electromagnetic compatibility of the on-board electronics to influence of the TL EF and TL towers.Документ The development of the theory of instantaneous power of three-phase network in terms of network centrism(NTU "KhPI", 2017) Sokol, Yevgen I. ; Sirotin, Yu. A.; Iierusalimova, T. S.; Gryb, O. G.; Shvets, S. V.; Gapon, D. A.Purpose. Information technologies allow multidimensional analysis of information about the state of the power system in a single information space in terms of providing network-centric approach to control and use of unmanned aerial vehicles as tools for condition monitoring of three-phase network. Methodology. The idea of energy processes in three independent (rather than four dependent) curves vector-functions with values in the arithmetic three-dimensional space adequately for both 4-wire and 3–wire circuits. The presence of zero sequence current structural (and mathematically) features a 4-wire scheme of energy from a 3-wire circuit. The zero sequence voltage caused by the displacement of the zero voltage phases. Offset zero in the calculations can be taken into account by appropriate selection of the reference voltages. Both of these energetic phenomena with common methodical positions are described in the framework of the general mathematical model, in which a significant role is played by the ort zero sequence. Results. Vector approach with a unified voice allows us to obtain and analyze new energy characteristics for 4–wire and 3–wire circuits in sinusoidal and non-sinusoidal mode, both in temporal and frequency domain. Originality. Symmetric sinusoidal mode is balanced, even with non-zero reactive power. The converse is not true. The mode can be balanced and unbalanced load. The mode can be balanced and unbalanced voltage. Practical value. Assessing balance in network mode and the impact of instantaneous power on the magnitude of the losses, will allow to avoid the appearance of zero sequence and, thus, to improve the quality of electricity.Документ Network-centric technologies for control of three-phase network operation modes(NTU "KhPI", 2017) Sokol, Yevgen I. ; Sirotin, Yu. A.; Iierusalimova, T. S.; Gryb, O. G.; Shvets, S. V.; Gapon, D. A.Purpose. The development of the control system for three-phase network is based on intelligent technologies of network-centric control of heterogeneous objects. The introduction of unmanned aerial vehicles for monitoring of three-phase network increases the efficiency of management. Methodology. The case of decomposition of the instantaneous capacities of the fixed and variable components for 3-wire system. The features of power balance for the different modes of its functioning. It should be noted that symmetric sinusoidal mode is balanced and good, but really unbalanced, if the standard reactive power is not zero. To solve the problem of compensation is sufficient knowledge of the total value of the inactive components of full power (value of the inactive power) without detail. The creation of a methodology of measurement and assessment will require knowledge of the magnitudes of each inactive component separately, which leads to the development of a unified approach to the measurement and compensation of inactive components of full power and the development of a generalized theory of power. Results. Procedure for the compensation of the current of zero sequence excludes from circuit the source, as the active component of instantaneous power of zero sequence, and a vector due to a current of zero sequence. This procedure is performed without time delay as it does not require integration. Only a 3–wire system with symmetrical voltage eliminates pulsations and symmetrization of the equivalent conductances of the phases of the task. Under asymmetric voltage, the power is different, its analysis requires the creation of a vector mathematical model of the energy processes of asymmetrical modes of 3–phase systems. Originality. The proposed method extends the basis of the vector method for any zero sequence voltages and shows that the various theories of instantaneous power three wired scheme due to the choice of a basis in a two-dimensional subspace. Practical value. The algorithm and software implementation for the decomposition of the zero sequence current, which allocated the procedure of obtaining null-balanced vectors of phase and interfacial voltage, calculation of active and inactive instantaneous power is zero balanced mode. The simulation results obtained in the software package Matlab by the method of visual programming in Simulink.Документ The structural and parametrical organization of elements of a power supply system in the conditions of network centrism(NTU "KhPI", 2016) Sokol, Yevgen I. ; Gryb, O. G.; Shvets, S. V.Purpose. Development of indicators of the structural and parametrical organization of effective active and adaptive system of service of power supply systems in the conditions of ideology of Smart Grid. Methodology. In the conditions of application of ideology of Smart Grid for increase of intellectualization of electrical power system there is a need of introduction of the principle of a network centrism in the structural and parametrical organization of elements of power supply systems that involves performance of conditions on implementation of provisions of the principle of Situational Awareness. The essence of this principle consists in that, information on a condition of system has to be presented in the form convenient for the analysis, recognition, transfer, distribution and storage, to be coordinated for flexible and optimum development at the subsystem and object-by-object levels. Results. Structural and parametrical optimization of elements of power supply systems in the conditions of a network centrism and the concept of SG involves use of provisions of the theory of systems and concepts of multicriteria optimizing synthesis. It is offered to use the modified adaptive indicator of the generalizing effect of synthesis of structure of active and adaptive system of service of power supply systems in the form of a difference of the generalizing effects: the introduced option of structure of system and basic. Originality. Introduction of an adaptive indicator of synthesis of system of service of power supply systems considers the concept of «service of system on the basis of a response» in the presence of false and true refusals. Practical value. Use of the specified indicator will allow to specify procedure of selection of competitive options for the purpose of definition of a set of admissible structures which meet the requirements of criterion function.Документ A method of complex automated monitoring of Ukrainian power energy system objects to increase its operation safety(NTU "KhPI", 2016) Sokol, Yevgen I. ; Rezinkina, M. M.; Gryb, O. G.; Vasilchenko, V. I.; Zuev, A. A.; Bortnikov, A. V.; Sosina, E. V.The paper describes an algorithm of the complex automated monitoring of Ukraine’s power energy system, aimed at ensuring safety of its personnel and equipment. This monitoring involves usage of unmanned aerial vehicles (UAVs) for planned and unplanned registration status of power transmission lines (PTL) and high voltage substations (HVS). It is assumed that unscheduled overflights will be made in emergency situations on power lines. With the help of the UAV, pictures of transmission and HVS will be recorded from the air in the optical and infrared ranges, as well as strength of electric (EF) and magnetic (MF) fields will be measured along the route of flight. Usage specially developed software allows to compare the recorded pictures with pre-UAV etalon patterns corresponding to normal operation of investigated transmission lines and the HVSs. Such reference pattern together with the experimentally obtained maps of HVS’s protective grounding will be summarized in a single document – a passport of HVS and PTL. This passport must also contain the measured and calculated values of strength levels of EF and MF in the places where staff of power facilities stay as well as layout of equipment, the most vulnerable to the effects of electromagnetic interference. If necessary, as part of ongoing monitoring, recommendations will be given on the design and location of electromagnetic screens, reducing the levels of electromagnetic interference as well as on location of lightning rods, reducing probability lightning attachment to the objects. The paper presents analytic expressions, which formed the basis of the developed software for calculation of the EF strength in the vicinity of power lines. This software will be used as a base at UAV navigation along the transmission lines, as well as to detect violations in the transmission lines operation. Comparison of distributions of EF strength calculated with the help of the elaborated software with the known literature data has been presented also. The difference between the proposed method of monitoring and the existing methods is full automation of the complex control of a number of parameters characterizing the state of the external power grid facilities, as well as its basic electrical parameters. This will be possible due to usage of specially developed software for recognition of optical and infrared images, as well as pictures of lines of equal EF and MF strength.Документ Numerical computation of electric fields in presence of curvilinear interface between conductive and non-conductive media(NTU "KhPI", 2016) Sokol, Yevgen I. ; Rezinkina, M. M.; Sosina, E. V.; Gryb, O. G.Purpose. To elaborate a method of electric field numerical calculation in systems with curved boundaries between conductive and non-conductive media at final volume method usage and application of the rectangular grids. Methodology. At electric field calculation in quasi-stationary approximation, potential of the whole conductive object (rod) is constant. At final difference scheme writing, presence of the curved part of the boundary between conducting and non-conducting media has been taking into account as follows. It was supposed that curved section complements the closed loop on which integration of the solvable equation is done instead of a straight section which extends within a conducting medium. Usage of this approach allows taking into account square of the curved sections of the boundary and distance between surface of non conductive medium and nearest nodes of the computational grid. Results. Dependence of the maximum electric field intensity on the height and radius of curvature peaks rods has been got with the help of calculations. As a result, a polynomial approximation for the analytical expression of the external electric field intensity, upon which application to the conductive object of a certain height and radius of curvature of its top, corona discharges will develop.