Кафедра "Турбінобудування"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/51

Офіційний сайт кафедри http://web.kpi.kharkov.ua/turbine

Кафедра "Турбінобудування" була заснована у 1930 році у Харківському механіко-машинобудівному інституті визначним ученим, педагогом і організатор науки, професором Володимиром Матвійовичем Маковським.

Постановою Ради Міністрів України № 665-р від 22 грудня 2006 року науково-дослідний комплекс експериментальних установок щодо вивчення газодинамічних та теплофізичних процесів у турбомашинах кафедри "Турбінобудування" НТУ "ХПІ" набув статусу "Національного надбання України". Це єдиний у країні приклад високої оцінки значущості обладнання університетської кафедри та високих наукових результатів, які одержують за його допомогою. Очолював кафедру на той час доктор технічних наук, лауреат Державної премії України в галузі науки і техніки професор Анатолій Володимирович Бойко.

Кафедра входить до складу Навчально-наукового інституту енергетики, електроніки та електромеханіки Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 5 кандидатів технічних наук; 1 співробітник має звання професора, 5 – доцента, 2 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Пошук можливих конструктивних рішень для продовження експлуатації ЦВТ потужної турбіни АЕС після пошкодження лопаток ротора
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Усатий, Олександр Павлович; Черноусенко, Ольга Юріївна; Пешко, Віталій Анатолійович
    Можливість швидкого відновлення роботи потужної турбоустановки в умовах АЕС після аварійного пошкодження робочих лопаток є вельми актуальною задачею, особливо в умовах дефіциту генеруючих потужностей в енергосистемі. Для прийняття відповідних рішень щодо зміни конструкції турбіни були проведені необхідні розрахункові дослідження циліндру високого тиску (ЦВТ) турбіни К-1000-60/3000 в проектній конструкції та без робочих лопаток п'ятого ступеня і з чотирма першими ступенями (без п’ятого ступеня) обох потоків турбіни. Результати дослідження термо- та газодинамічних параметрів потоку показали на наявність відмінностей в умовах роботи усіх ступенів турбіни та найбільш значними вони є для 4-го і 5-го ступенів. Відмічено суттєве зменшення внутрішньої потужності ЦВТ турбіни відповідно 35,5 МВт і 6,6 МВт та його внутрішньої ефективності відповідно на 11,8% і 2,1%. Враховуючи усі аспекти, які пов'язані з роботою енергоблоку найбільш вдалим рішенням щодо швидкого відновлення роботи потужної турбоустановки в умовах АЕС після аварійного пошкодження робочих лопаток є варіант конструкції ЦВТ без робочих лопаток п'ятого ступеня.
  • Ескіз
    Документ
    Оптимізація та порівняння двох технологій виготовлення робочих решіток для ПЧ ЦВТ турбіни К-330-23,5
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Усатий, Олександр Павлович; Авдєєва, Олена Петрівна; Пальков, Ігор Андрійович; Пальков, Сергій Андрійович; Іщенко, Олег Ігоревич
    В статті викладені результати багатопараметричної оптимізації конструкційних і термогазодинамічних параметрів проточної частини ЦВТ К-330-23,5, які отримані за допомогою розробленої САПР «Турбоагрегат». Знайдені 12 оптимальних рішень для проточної частини ЦВД К-330-23,5 дозволяють не тільки оцінити вплив на ефективність ЦВТ конструкційних параметрів і чисел робочих лопаток ступенів ЦВТ, а і провести порівняльний аналіз двох технологічних підходів виготовлення робочих лопаток – з підрізуванням вихідних кромок і без такої.
  • Ескіз
    Документ
    Застосування комплексної методології для оптимізації проточних частин парових турбін
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Авдєєва, Олена Петрівна; Усатий, Олександр Павлович; Пальков, Ігор Андрійович; Пальков, Сергій Андрійович
    В статті викладено ефективність застосування комплексної методології при модернізації існуючих проточних частин парових турбін. Наведена методологія дозволяє збільшити абсолютний ККД на 0,83 %, а потужність турбіни на 1,87 % за рахунок використання об’єктно-орієнтованого підходу. Використання рекурсивного обходу різних рівнів оптимізації задля обміну інформацією між об’єктами дозволяє знайти оптимальне рішення для великої кількості конструктивних параметрів.