Кафедра "Комп'ютерна інженерія та програмування"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1095

Офіційний сайт кафедри https://web.kpi.kharkov.ua/cep

Від 26 листопада 2021 року кафедра має назву – "Комп’ютерна інженерія та програмування"; попередні назви – “Обчислювальна техніка та програмування”, “Електронні обчислювальні машини”, первісна назва – кафедра “Математичні та лічильно-вирішальні прилади та пристрої”.

Кафедра “Математичні та лічильно-вирішальні прилади та пристрої” заснована 1 вересня 1961 року. Організатором та її першим завідувачем був професор Віктор Георгійович Васильєв.

Кафедра входить до складу Навчально-наукового інституту комп'ютерних наук та інформаційних технологій Національного технічного університету "Харківський політехнічний інститут". Перший випуск – 24 інженери, підготовлених кафедрою, відбувся в 1964 році. З тих пір кафедрою підготовлено понад 4 тисячі фахівців, зокрема близько 500 для 50 країн світу.

У складі науково-педагогічного колективу кафедри працюють: 11 докторів технічних наук, 21 кандидат технічних наук, 1 – економічних, 1 – фізико-математичних, 1 – педагогічних, 1 доктор філософії; 9 співробітників мають звання професора, 14 – доцента, 2 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Application of probabilistic-time graphs for evaluating the effectiveness of the electrocardiological study process
    (Одеський національний політехнічний університет, 2020) Filatova, A. E.; Povoroznyuk, A. I.; Fahs, Mohamad
    This work is devoted to the development of a structural model of the patient’s electrocardiological study process based on graph theory, probability theory and the method of generating functions. The developed structural model is presented in the form of a probabilistic-time graph, in which nine main states and an uncertainty state (a set of states that do not lead to the goal) are identified, as well as the probabilistic-time characteristics of the arcs of transitions from one graph state to another. The following are identified as the main states characterizing the process to complete an electrocardiological study: the beginning of the study; indications were defined; morphological analysis of biomedical signals with locally concentrated features was performed; pathological changes were identified; comparison with previous electrocardiological studies was performed; dynamics evaluation was completed; evaluation of treatment effectiveness was completed; diagnostic decision was made; recommendations were issued (the end of the electrocardiological study). For the proposed model of the electrocardiological study process by the Mason method, there are obtained analytical expressions for the generating functions of the entire graph, as well as the part of the graph that characterizes the successful completion of the electrocardiological study. Using the indicated generating functions, analytical expressions were obtained to calculate the average transit time of an electrocardiological study and the probability of successful completion of this process. To get all analytic expressions, a program was written in the Matlab language. The developed structural model of an electrocardiological study in the form of a probabilistic-time graph made it possible to identify the main states and determine the criteria for the effectiveness of the process in terms of average time and the probability of a successful study.
  • Ескіз
    Документ
    Development of alternative diagnostic feature system in the cardiology decision support systems
    (Технологический центр, 2016) Povoroznyuk, A. I.; Filatova, A. E.
    The trend towards an increase in the production of Ukrainian digital electrocardiographic telemetry systems such as transtelephonic digital 12-channel electrocardiograph complex "Telecard" identified the need to create intelligent automated cardiac decision support systems. The basis of these systems is the morphologic analysis of electrocardiograms, which represent biomedical signals with locally concentrated features. The system of alternative diagnostic features based on the method proposed by the authors of the morphological analysis of biomedical signals with locally concentrated features to provide additional graphical information in the diagnosis of one of the most common cardiac arrhythmias - ventricular arrhythmia is developed. Representation of the electrocardiogram in two-dimensional space of alternative features, as well as hodograph is proposed. Differences between the ECG-hodographs for normal ECG and ECG with different arrhythmias of right and left ventricles, as well as multifocal ventricular arrhythmia are analyzed. It was found that a graphical representation of an electrocardiogram in the alternative feature space allows the physician to visually perform the classification of different types of ventricular arrhythmia, which in combination with the classical analysis of ECG on the time axis increases the reliability of diagnostics.