Кафедра "Комп'ютерна інженерія та програмування"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1095

Офіційний сайт кафедри https://web.kpi.kharkov.ua/cep

Від 26 листопада 2021 року кафедра має назву – "Комп’ютерна інженерія та програмування"; попередні назви – “Обчислювальна техніка та програмування”, “Електронні обчислювальні машини”, первісна назва – кафедра “Математичні та лічильно-вирішальні прилади та пристрої”.

Кафедра “Математичні та лічильно-вирішальні прилади та пристрої” заснована 1 вересня 1961 року. Організатором та її першим завідувачем був професор Віктор Георгійович Васильєв.

Кафедра входить до складу Навчально-наукового інституту комп'ютерних наук та інформаційних технологій Національного технічного університету "Харківський політехнічний інститут". Перший випуск – 24 інженери, підготовлених кафедрою, відбувся в 1964 році. З тих пір кафедрою підготовлено понад 4 тисячі фахівців, зокрема близько 500 для 50 країн світу.

У складі науково-педагогічного колективу кафедри працюють: 11 докторів технічних наук, 21 кандидат технічних наук, 1 – економічних, 1 – фізико-математичних, 1 – педагогічних, 1 доктор філософії; 9 співробітників мають звання професора, 14 – доцента, 2 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Usage of convolutional neural network for multispectral image processing applied to the problem of detecting fire hazardous forest areas
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Yaloveha, V.; Hlavcheva, D.; Podorozhniak, A.
    Neural networks are intensively developed and used in all spheres of human activity in the modern world. Their use to determine the fire hazardous forest areas can begin to solve the problem of preventing wildfires. In recent years, wildfires have acquired enormous proportions. Wildfires are difficult to control and, if they occur, require alarge amount of resources to eliminate them. The paper is devoted to solve the problem of identifying fire hazardous forest areas. The Camp Fire (California, USA) areas are considered. The purpose of the paper is to research the possibility of using convolutional neural networks for the detection fire hazardous forest areas using multispectral images obtained from Landsat 8. The tasks of research are finding the territories where the largest fires occurred in recent time; analyzing economic and ecologic losses from wildfires; receiving and processing multispectral images of wildfire areas from satellite Landsat 8; calculation of spectral indices (NDVI, NDWI, PSRI); developing convolutional neural network and analyzing results. The object of the research is the process of detecting fire hazardous forest areas using convolutional neural network. The subject of the research is the process of recognition multispectral images using deep learning neural network. The scientific novelty of the research is the recognition method of multispectral images by using convolutional neural networkhas been improved. The theory of deep learning neural networks, the theory of recognition multispectral images and mathematical statistics methodsare used. The spectral indices for allocating the object under research (green vegetation, humidity, dry carbon) were calculated. It is obtained that the classification accuracy for a convolutional neural network on the test data is 94.27%.