Кафедра "Комп'ютерна інженерія та програмування"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1095

Офіційний сайт кафедри https://web.kpi.kharkov.ua/cep

Від 26 листопада 2021 року кафедра має назву – "Комп’ютерна інженерія та програмування"; попередні назви – “Обчислювальна техніка та програмування”, “Електронні обчислювальні машини”, первісна назва – кафедра “Математичні та лічильно-вирішальні прилади та пристрої”.

Кафедра “Математичні та лічильно-вирішальні прилади та пристрої” заснована 1 вересня 1961 року. Організатором та її першим завідувачем був професор Віктор Георгійович Васильєв.

Кафедра входить до складу Навчально-наукового інституту комп'ютерних наук та інформаційних технологій Національного технічного університету "Харківський політехнічний інститут". Перший випуск – 24 інженери, підготовлених кафедрою, відбувся в 1964 році. З тих пір кафедрою підготовлено понад 4 тисячі фахівців, зокрема близько 500 для 50 країн світу.

У складі науково-педагогічного колективу кафедри працюють: 11 докторів технічних наук, 21 кандидат технічних наук, 1 – економічних, 1 – фізико-математичних, 1 – педагогічних, 1 доктор філософії; 9 співробітників мають звання професора, 14 – доцента, 2 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Diagnosing data in a non-positional number system of residual classes
    (ФОП Петров В. В., 2021) Krasnobayev, Victor; Koshman, Sergey; Kovalchuk, Dmytro
  • Ескіз
    Документ
    The concept of performing the addition operation in the sistem of residual classes
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Krasnobayev, Victor; Koshman, Sergey; Kovalchuk, Dmytro
    The subject of the article is the development of a method for implementing the arithmetic operation of adding the residuals of numbers, which are represented in the system of residual classes (RNS). This method is based on the use of positional binary adders. The purpose of the article is to improve the performance of computer systems (CS) and their components by introducing new ways of organizing calculations based on the use of RNS. Tasks: to analyze and identify the shortcomings of the existing number systems that are used in the construction of computer systems and components; explore possible ways to eliminate the identified deficiencies; explore the structure of binary positional adders, taking into account the scheme for adding two residues of numbers modulo RNS; to develop a method for constructing adders modulo RNS, which is based on the use of a set of binary single-digit positional adders. Research methods: methods of analysis and synthesis of computer systems, number theory, coding theory in RNS. The following results are obtained. The paper shows that one of the promising ways to improve the performance of the CS is the use of RNS. The mathematical basis of RNS is the Chinese remainder theorem, which states that an integer operation on one large modulus can be replaced by a set of operations on coprime small modules. This opens up broad prospects for optimizing calculations. On the one hand, it is possible to significantly simplify the performance of complex and cumbersome calculations, including on low-resource computing platforms. On the other hand, calculations for different modules can be performed in parallel, which increases the performance of the CS. Conclusions. The article considers the operation of adding two numbers. This operation is the basis for both traditional positional number systems and RNS, i.e. forms the computational basis of all existing CS components. A new method for calculating the sum of the residuals of numbers modulo an arbitrary is proposed, and examples are given that clearly demonstrate the effectiveness of the proposed method. This method can be used in various computer applications, including for improving computing performance, ensuring fault tolerance, etc.
  • Ескіз
    Документ
    The data diagnostic method of in the system of residue classes
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Krasnobayev, Victor; Koshman, Sergey; Kovalchuk, Dmytro
    The subject of the article is the development of a method for diagnosing data that are presented in the system of residual classes (SRC). The purpose of the article is to develop a method for fast diagnostics of data in the SRC when entering the minimum information redundancy. Tasks: to analyze and identify possible shortcomings of existing methods for diagnosing data in the SRC, to explore possible ways to eliminate the identified shortcomings, to develop a method for prompt diagnosis of data in SRC. Research methods: methods of analysis and synthesis of computer systems, number theory, coding theory in SRC. The following results were obtained. It is shown that the main disadvantage of the existing methods is the significant time of data diagnostics when it is necessary to introduce significant information redundancy into the non-positional code structure (NCS). The method considered in the article makes it possible to increase the efficiency of the diagnostic procedure when introducing minimal information redundancy into the NCS. The data diagnostics time, in comparison with the known methods, is reduced primarily due to the elimination of the procedure for converting numbers from the NCS to the positional code, as well as the elimination of the positional operation of comparing numbers. Secondly, the data diagnostics time is reduced by reducing the number of SRC bases in which errors can occur. Third, the data diagnostics time is reduced due to the presentation of the set of values of the alternative set of numbers in a tabular form and the possibility of sampling them in one machine cycle. The amount of additionally introduced information redundancy is reduced due to the effective use of the internal information redundancy tha texists in the SRC. An example of using the proposed method for diagnosing data in SRC is given. Conclusions. Thus, the proposed method makes it possible to reduce the time for diagnosing data errors that are presented in the SRC, which increases the efficiency of diagnostics with the introduction of minimal information redundancy.