Кафедра "Комп'ютерна інженерія та програмування"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1095

Офіційний сайт кафедри https://web.kpi.kharkov.ua/cep

Від 26 листопада 2021 року кафедра має назву – "Комп’ютерна інженерія та програмування"; попередні назви – “Обчислювальна техніка та програмування”, “Електронні обчислювальні машини”, первісна назва – кафедра “Математичні та лічильно-вирішальні прилади та пристрої”.

Кафедра “Математичні та лічильно-вирішальні прилади та пристрої” заснована 1 вересня 1961 року. Організатором та її першим завідувачем був професор Віктор Георгійович Васильєв.

Кафедра входить до складу Навчально-наукового інституту комп'ютерних наук та інформаційних технологій Національного технічного університету "Харківський політехнічний інститут". Перший випуск – 24 інженери, підготовлених кафедрою, відбувся в 1964 році. З тих пір кафедрою підготовлено понад 4 тисячі фахівців, зокрема близько 500 для 50 країн світу.

У складі науково-педагогічного колективу кафедри працюють: 11 докторів технічних наук, 21 кандидат технічних наук, 1 – економічних, 1 – фізико-математичних, 1 – педагогічних, 1 доктор філософії; 9 співробітників мають звання професора, 14 – доцента, 2 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    A method for choosing a strategy for the behavior of a cellular automaton when solving the problem of finding targets by a group of moving objects
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Chystov, Valerii; Zakharchenko, Iryna; Pavlenko, Vladislava; Pavlenko, Maksim
    Currently, a large number of different mathematical models and methods aimed at solving problems of multidimensional optimization and modeling of complex behavioral systems have been developed. One of the areas of search for solutions is the search for solutions in conditions of incomplete information and the need to take into account changing external factors. Often such problems are solved by the method of complete search. In some conditions, the method of complete search can be significantly improved through the implementation and use of behavioral models of natural formations. Examples of such formations can be group behavior of insects, birds, fish, various flocks, etc. The idea of copying group activity of a shoal of fishes at the decision of problems of joint activity on extraction of food is used in work. The reasoning based on the simulation of the behavior of such a natural object allowed to justify the choice as a mathematical model - cellular automata. The paper examines the key features of such a model. Modeling of his work is carried out, strategies of behavior of group of mobile objects at search of the purposes are developed, key characteristics are investigated and the method of adaptive choice of strategy and change of rules of behavior taking into account features of the solved problem is developed. The search strategy is implemented in the work, which takes into account the need to solve the optimization problem on two parameters. The obtained results testify to the high descriptive possibility of such an approach, the possibility of finding the optimal strategy for the behavior of the cellular automaton and the formalization of the process of selecting the parameters of its operation. A further improvement of this approach can be the implementation of simulation to study the properties of the developed model, the formation of the optimal set of rules and parameters of the machine for the whole set of tasks.
  • Ескіз
    Документ
    Research of images filtration methods in computer systems
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Tymochko, Oleksandr; Larin, Volodymyr; Kolmykov, Maksym; Timochko, Oleksander; Pavlenko, Vladislava
    It is known that human eyes are less sensitive to color, than to their brightness. In the RGB color space, all three components are considered equally important, and they are usually stored with the same resolution. However, you can display a color image more efficiently, separating the brightness from color information and presenting it with a higher resolution than color. RGB space is well suited for computer graphics, because it uses these three components for color formation. However, RGB space is not very effective when it comes to real images. The fact is that to save the color of an image, you need to know and store all three components of the RGB, and if one of them is missing, it will greatly distort the visual image representation. Also, when processing images in RGB space, it is not always convenient to perform any pixel conversion, because, in this case, it will be necessary to list all three values of the RGB component and write back. This greatly reduces the performance of various image processing algorithms. For these and other reasons, many video standards use brightness and two signals that carry information about the red and blue components of the signal, as a color model other than RGB. The most famous among such spaces is YCbCr.