Кафедра "Комп'ютерна інженерія та програмування"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1095

Офіційний сайт кафедри https://web.kpi.kharkov.ua/cep

Від 26 листопада 2021 року кафедра має назву – "Комп’ютерна інженерія та програмування"; попередні назви – “Обчислювальна техніка та програмування”, “Електронні обчислювальні машини”, первісна назва – кафедра “Математичні та лічильно-вирішальні прилади та пристрої”.

Кафедра “Математичні та лічильно-вирішальні прилади та пристрої” заснована 1 вересня 1961 року. Організатором та її першим завідувачем був професор Віктор Георгійович Васильєв.

Кафедра входить до складу Навчально-наукового інституту комп'ютерних наук та інформаційних технологій Національного технічного університету "Харківський політехнічний інститут". Перший випуск – 24 інженери, підготовлених кафедрою, відбувся в 1964 році. З тих пір кафедрою підготовлено понад 4 тисячі фахівців, зокрема близько 500 для 50 країн світу.

У складі науково-педагогічного колективу кафедри працюють: 11 докторів технічних наук, 21 кандидат технічних наук, 1 – економічних, 1 – фізико-математичних, 1 – педагогічних, 1 доктор філософії; 9 співробітників мають звання професора, 14 – доцента, 2 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    The development of software and hardware of battery-powered trackers for battery care and battery management
    (ФОП Петров В. В., 2021) Makogon, Helen; Suchko, Roman; Slavutskiy, I.; Kukhta, A.
  • Ескіз
    Документ
    Application of the correlation analysis mathematical apparatus for determination the lead–acid batteries management and status control minimum diagnosis
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Makogon, Helen; Suchko, Roman; Moskalenko, Viktor; Kalinin, Igor; Burdin, Sergiy; Iksarytsia, Viktoriia
    The subject matter of the article is the lead–acid batteries carrier and management.The goal of the study is the development of a methodology for assessing the lead–acid batteries’ parameters and to provide recommendations for their long–term management and carrier in the army operation. The tasks to be solved are: on the basis of the lead–acid batteries operation experience to define a set of diagnostic parameters on which it is possible to draw a conclusion about the technical state of a battery and change of its electric, operational and design properties; to determine the correlations between the properties of the battery and make their assessment based on the established criteria; to build a diagnostic graph–model of causal relationships of a battery’s parameters in the form of a correlation galaxy; to justify the lead–acid batteries carrier and management minimum diagnosis which can be carried out during their life cycle management та status control under the lack of time. General scientific and special methods of scientific knowledge are used. The following results were obtained: The set of diagnostic parameters to assess the battery technical state was determinated. Statistical data processing using the mathematical apparatus of correlation analysis was done. The diagnostic graph model of a lead–acid battery in the form of a correlation galaxy was constructed. The lead–acid batteries carrier and management minimum diagnosis during the life cycle was determined. Conclusions. Analysis of the experience of the lead–acid batteries operation determines a set of diagnostic parameters, which can be used to draw a conclusion about the technical state of a battery and change of its electric,operational and design properties. As generalized diagnostic parameters of the battery technical state can be considered the State of Health and the State of charge. Statistical data processing using the mathematical apparatus of correlation analysis allows to determine the causal and dependencies between the battery’s parameters and make their assessment based on the established criteria. Presentation of generalized results in the form of a correlation galaxy makes it possible to build a diagnostic graph–model of battery in the form of a correlation galaxy. Control of the SoC and SoH of the lead–acid battery will ensure the monitoring of the remaining charge, as well as the issuance of a warning about the need to replace the battery. A promising direction in the development of battery operation can be considered the development of battery–powered trackers – software and hardware devices capable of caring for battery care and battery management.