Кафедра "Комп'ютерна інженерія та програмування"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1095

Офіційний сайт кафедри https://web.kpi.kharkov.ua/cep

Від 26 листопада 2021 року кафедра має назву – "Комп’ютерна інженерія та програмування"; попередні назви – “Обчислювальна техніка та програмування”, “Електронні обчислювальні машини”, первісна назва – кафедра “Математичні та лічильно-вирішальні прилади та пристрої”.

Кафедра “Математичні та лічильно-вирішальні прилади та пристрої” заснована 1 вересня 1961 року. Організатором та її першим завідувачем був професор Віктор Георгійович Васильєв.

Кафедра входить до складу Навчально-наукового інституту комп'ютерних наук та інформаційних технологій Національного технічного університету "Харківський політехнічний інститут". Перший випуск – 24 інженери, підготовлених кафедрою, відбувся в 1964 році. З тих пір кафедрою підготовлено понад 4 тисячі фахівців, зокрема близько 500 для 50 країн світу.

У складі науково-педагогічного колективу кафедри працюють: 11 докторів технічних наук, 21 кандидат технічних наук, 1 – економічних, 1 – фізико-математичних, 1 – педагогічних, 1 доктор філософії; 9 співробітників мають звання професора, 14 – доцента, 2 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Transaction Planning Methods in Hyperconverged Architecture Systems
    (Ceur-ws, 2019) Bulba, S. S.; Kuchuk, N. G.; Semenova, A.; Zhengbing, Hu
    The analysis of the features of the functioning of systems with hyperconverged architecture is carried out. Transaction efficiency in such systems is reduced compared to decentralized systems. The purpose of the research: to develop a method for planning transactions in systems with a hypeconvergent architecture, which will take into account the specifics of the functioning of such systems. The development of the method takes into account the centralized management of the transaction package and the distribution of various resources. Existing methods for determining the sequence of transactions in systems with hyperconverged architecture are considered. The methods that were considered were based on the greedy, clustering, and ant algorithms. For each method, its features and functioning scheme are determined. Analysis of existing methods showed the advantages of the greedy algorithm with a small system load. It is also proved that with the growth of information volumes and the number of simultaneously executed transactions, each of the methods considered is less effective than with decentralized management. Therefore, a method for planning the execution of transactions through the sharing of these optimization algorithms is proposed. This allowed to reduce the execution time of the optimal transaction plan in comparison with existing methods. The experiments showed that the effectiveness of the proposed method increases with increasing amount of information. Which is processed by a transaction package of a hyperconverged system.
  • Ескіз
    Документ
    Identification of the state of an object under conditions of fuzzy input data
    (ПП "Технологічний Центр", 2019) Semenov, Serhii. G.; Sira, Oksana; Gavrylenko, Svitlana; Kuchuk, Nina G.
    Проведена модернізація методів ідентифікації стану об'єктів в умовах нечітких вхідних даних, описаних своїми функціями належності. Обраний напрямок вдосконалення традиційних методів пов'язаний із принциповими особливостями вирішення цього завдання в реальних умовах малої вибірки вхідних даних. У цих умовах для розв’язання задачі ідентифікації стану доцільно перейти до менш вибагливої в інформаційному відношенні технології опису вихідних даних, заснованої на математичному апараті нечіткої математики. Цей перехід зажадав розробки нових формальних методів вирішення конкретних завдань. При цьому для багатовимірного дискримінантного аналізу розроблено методику розв’язання нечіткої системи лінійних алгебраїчних рівнянь. Для вирішення завдання кластеризації запропонована спеціальна процедура порівняння нечітких відстаней між об'єктами кластеризації і центрами групування. Обраний напрямок вдосконалення традиційного методу регресійного аналізу визначено неможливістю використання класичного методу найменших квадратів в умовах, коли всі змінні описані нечітко. Ця обставина привела до необхідності побудови спеціальної двохкрокової процедури вирішення завдання. При цьому реалізується мінімізація лінійної комбінації міри видалення шуканого рішення від модального і міри компактності функції приналежності пояснювальної змінної. Технологія нечіткого регресійного аналізу реалізована в важливому для практики випадку, коли вихідні нечіткі дані описані загальними функціями приналежності (L-R) типу. При цьому отримано аналітичний розв'язок задачі у вигляді розрахункових формул. В результаті обговорення показано, що модернізація класичних методів рішення задачі ідентифікації стану з урахуванням нечіткого характеру представлення вихідних даних дозволила проводити ідентифікацію об'єктів в реальних умовах малої вибірки нечітких вихідних даних.