Кафедра "Комп'ютерна інженерія та програмування"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1095

Офіційний сайт кафедри https://web.kpi.kharkov.ua/cep

Від 26 листопада 2021 року кафедра має назву – "Комп’ютерна інженерія та програмування"; попередні назви – “Обчислювальна техніка та програмування”, “Електронні обчислювальні машини”, первісна назва – кафедра “Математичні та лічильно-вирішальні прилади та пристрої”.

Кафедра “Математичні та лічильно-вирішальні прилади та пристрої” заснована 1 вересня 1961 року. Організатором та її першим завідувачем був професор Віктор Георгійович Васильєв.

Кафедра входить до складу Навчально-наукового інституту комп'ютерних наук та інформаційних технологій Національного технічного університету "Харківський політехнічний інститут". Перший випуск – 24 інженери, підготовлених кафедрою, відбувся в 1964 році. З тих пір кафедрою підготовлено понад 4 тисячі фахівців, зокрема близько 500 для 50 країн світу.

У складі науково-педагогічного колективу кафедри працюють: 11 докторів технічних наук, 21 кандидат технічних наук, 1 – економічних, 1 – фізико-математичних, 1 – педагогічних, 1 доктор філософії; 9 співробітників мають звання професора, 14 – доцента, 2 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Метод розподілу ресурсів між композитними застосунками
    (ФОП Петров В. В., 2018) Бульба, Сергій Сергійович; Давидов, Вячеслав Вадимович; Кучук, Георгій Анатолійович
    Предмет розгляду – методи оптимального розподілу ресурсів. Метою статті є розробка методу розподілу ресурсів між композитними за стосунками, орієнтованому на динамічний вибір алгоритму оптимізації. методи, що використовуються, – жадібні та мурашині алгоритми, кластерізаційний підхід. Результати роботи. Розглянуто узагальнення існуючих евристик динамічного планування, які відносяться до класу жадібних алгоритмів та знаходять на кожному кроці локально оптимальне рішення. Проведено укрупнену класифікацію методів розподілу пакету композитних застосунків. Проаналізовано два типи кластеризації - вертикальну та горизонтальну. Розглянута можливість планування наборів композитних застосунків на базі кластерізаціонного підходу. Наведено спосіб розподілу наборів композитних за стосунків як з використанням мурашиного алгоритму, так і на базі кластерізаційного підходу з використанням мурашиного алгоритму. Проаналізовано переваги та недоліки кожного із розглянутих підходів, що дало змогу визначити межі застосування кожного із підходів. Висновки. Запропоновано чотири різних підходи до розподілу ресурсів між композитними за стосунками з використанням таких методів: жадібні алгоритми, мурашині алгоритми, вертикальна та горизонтальна кластерізація, сумісне використання мурашиного алгоритму та кластерізації. Розроблений метод дозволяє динамічно провести найкращий вибір. Подальші дослідження будуть направлені на розробку відповідного алгоритму.
  • Ескіз
    Документ
    Система інтелектуального управління процесом розподілу ресурсів в хмарних обчислювальних середовищах
    (ДП "Український інститут інтелектуальної власності", 2018) Кучук, Георгій Анатолійович; Семенов, Сергій Геннадійович; Бульба, Сергій Сергійович; Лисиця, Дмитро Олександрович; Свістунов, Юрій Дмитрійович; Лимаренко, Вячеслав Володимирович; Резанов, Богдан Михайлович; Єфименко, Сергій Андрійович
    Система інтелектуального управління процесом розподілу ресурсів в хмарних обчислювальних середовищах включає послідовно з'єднані блок початкового виділення ресурсів екземпляру ОХ, блок прогнозування динамічних параметрів функціонування хостів (серверів) обчислювальної хмари (ОХ) і блок динамічного перерозподілу ресурсів між екземплярами ОХ, при цьому блок початкового виділення ресурсів екземпляру ОХ, що запускається, виконаний у вигляді обчислювача, що реалізує алгоритм вибору найкращого адекватного хосту для розміщення примірника в ОХ на основі аналізу ієрархій, блок прогнозування динамічних параметрів функціонування хостів (серверів) ОХ виконаний у вигляді обчислювача, що реалізує алгоритм аналізу і прогнозу навантаження ОХ за допомогою модифікованої моделі штучних нейронних мереж Елмана з вейвлет-функцією активації та навчанням за допомогою штучних імунних систем на основі історичних даних, сформованих при кластеризації методом нечітких с- середніх, при цьому блок прогнозування містить послідовно з'єднані блок нечіткої кластеризації, вхід якого з'єднаний з виходом блока початкового виділення ресурсів, блок нейромережевого прогнозування, вихід якого з'єднаний з входом блока динамічного перерозподілу ресурсів між екземплярами ОХ, і блок навчання нейромережі, з'єднаний з блоком нейромережевого прогнозу, а блок динамічного перерозподілу ресурсів між екземплярами ОХ виконаний у вигляді обчислювача, що реалізує алгоритм мінімізації нерівномірності використання навантаження на основі ситуаційного пошуку рішень. Додатково введено блок оптимізації на базі мурашиного алгоритму, що визначає найкоротшій шлях екземпляру ОХ до обчислювальних ресурсів і дає змогу збільшити пропускну можливість, а отже, пришвидшити передачу екземпляру ОХ для обчислення, блок розрахунку утилізації ресурсів U, котрий розраховує відсоток навантаження ресурсів в ОХ під час обчислення певного екземпляру, якщо рівень утилізації ресурсів ОХ близький до рівня 100 %, то обчислювальний екземпляр використовує ресурси ОХ ефективно, а також блок фінального розподілу ресурсів перерозподіляє ресурси між екземплярами ОХ з урахуванням знайденого шляху передачі, причому один вхід блока розрахунку утилізації ресурсів U з'єднаний з виходом блока динамічного перерозподілу ресурсів між екземплярами ОХ, другий - з'єднаний з виходом блока оптимізації на базі мурашиного алгоритму, а його вихід з'єднаний зі входом блока фінального динамічного розподілу ресурсів між екземплярами ОХ.
  • Ескіз
    Документ
    Structural optimization in a multi-channel distributed mass service system
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Raskin, Lev; Sira, Oksana; Parfeniuk, Yurii; Sukhomlyn, Larysa
    Problem of structural optimization in a distributed service system is solved by the example of system "Production - delivery - consumption" for mass market product. In this regard, the purpose of work is to develop a method for structural optimization of "Production - delivery - mass consumption" system, by introducing and rational placement of intermediate production points based on solving clustering problems with taking into account the peculiarities of calculating distances between city objects. To achieve the goal of the work, it is necessary to solve the following tasks: clustering of city objects, using the metric of city blocks, for a given number of groups for selected location of production and grouping centers; finding the best location for a given number of clustering centers; determination of a rational number of clustering centers. Task was solved in three stages. First stage - clustering a set of consumption objects for given intermediate delivery centers locations. The second stage - finding the best locations for a given number of intermediate delivery centers. The third stage - determination of the rational number of intermediate centers. Formulated problem is solved according to two criteria: combined length of delivery routes product consumers and the probability that a random delivery time exceeds the critical value. The numerical value of the second criterion is calculated on the assumption that for each path may be estimated value of the mean and variance delivery time. The appropriate number of production centers is determined by a simple comparison of system efficiency for several realistically possible options. An example of clustering problem solving in the metric of "city blocks" on a directed graph by both criteria is given.