Кафедра "Системний аналіз та інформаційно-аналітичні технології"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7644

Офіційний сайт кафедри http://web.kpi.kharkov.ua/say

Кафедра "Системний аналіз та інформаційно-аналітичні технології" заснована в 1982 році.

Кафедра входить до складу Навчально-наукового інституту комп'ютерних наук та інформаційних технологій Національного технічного університету "Харківський політехнічний інститут". Випускники кафедри працюють у провідних ІТ-компаніях: EPAM, CloudWorks, DataArt, MedeAnalytics, NIX Solutions, CodeIT, Ciklum та багатьох інших в Україні та за кордоном.

У складі науково-педагогічного колективу кафедри працюють: 4 доктора технічних наук; 9 кандидатів наук: 8 – технічних , 1 – економічних; 4 співробітника мають звання професора, 9 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Реверсные функции и распределения вероятностей случайного функционала-свертки от нормального марковского процесса
    (НТУ "ХПИ", 2018) Мазманишвили, Александр Сергеевич; Сидоренко, Анна Юрьевна
    Рассмотрен процесс, обладающий свойствами стационарности, нормальности и марковости. Для заданного временного интервала изучены энергетический функционал и функционал сверточного типа. При аналитическом рассмотрении задач теории вероятностей и математической статистики распространено допущение о том, что рассматриваемая задача получила своё разрешение, если построена характеристическая (производящая) функция. Однако, операция обратного преобразования Фурье или обратного преобразования Лапласа вызывает основные трудности в вычислительном отношении. Как числовая процедура преобразование Лапласа характеризуется неустойчивостью, степень которой увеличивается с ростом параметра преобразования. В работе предложен и использован подход для решения задачи статистики функционала, основанный на применении реверсных функций, что дало возможность получения аналитического выражения для производящей функции распределения случайных значений функционала-свертки. Проведен анализ статистических свойств функционала-свертки. Представлены математическое ожидание и дисперсия функционала-свертки. В данной работе плотность и интегральный закон распределения получены численно с помощью обратного преобразования Лапласа для выбранных значениях времени наблюдения 𝑇, декремента случайного процесса ν и его интенсивности σ𝑋 2 . Приведены зависимости плотности и функций распределения для заданных значений параметров функционалов. Из расчетов следует, что увеличение параметра 𝑇σ𝑋 2 приводит к расширению значений функционала-свертки в периферийные области больших уклонений. Уменьшение параметра ν𝑇 приводит к локализации значений функционала-свертки во флуктуационной области 𝑧 ≈ 0. Плотность 𝑓(𝑧) симметрична относительно 𝑧 = 0, имеет единственный максимум, две точки перегиба и экспоненциальную асимптотику на перифериях.