Кафедра "Фізика металів і напівпровідників"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/4703

Офіційний сайт кафедри http://web.kpi.kharkov.ua/fmp

Від 2002 року кафедра має назву "Фізика металів і напівпровідників", попередня назва – кафедра металофізики.

Кафедра металофізики організована в 1930 році у складі фізико-механічного факультету ХММІ. Деканом факультету був у ті роки видатний вчений-фізик, академік Іван Васильович Обреїмов.

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут". За час існування кафедрою підготовлено близько 3000 інженерів, у тому числі і для зарубіжних країн.

У складі науково-педагогічного колективу кафедри працюють: 3 доктора та 2 кандидата фізико-математичних наук; 3 співробітника мають звання професора.

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Growth and structure of WC/SI multilayer X-ray mirror
    (Національний науковий центр «Харківський фізико-технічний інститут», 2018) Pershyn, Yuriy P.; Chumak, V. S.; Shypkova, I. G.; Mamon, Valentine V.; Devizenko, A. Yu.; Kondratenko, Valeriy V.; Reshetnyak, M. V.; Zubarev, Evgeniy N.
    WC/Si multilayer X-ray mirrors (MXMs) with nominal layers thicknesses of 0.2…30.3 nm (periods: 0.7…38.9 nm) were deposited by direct current magnetron sputtering and studied by X-ray diffraction and crosssectional transmission electron microscopy (TEM). Carbide and silicon layers are amorphous throughout the studied thickness range. The WC layers interact with Si layers with formation of tungsten silicides (WSi2, W5Si3) and silicon carbide in as-deposited state. The bottom interlayer (WC-on-Si) consists of two subzones of approximately equal thickness. An estimation of the thickness, density, and composition of all layers is made. Based on the experimental data, a five-layer model of the WC/Si MXM structure is suggested.
  • Ескіз
    Документ
    Structure and phase formation features of Ti-Zr-Ni quasicrystalline films under heating
    (Sumy State University, 2019) Malykhin, S. V.; Kondratenko, V. V.; Kopylets, I. A. ; Surovitskiy, S. V.; Baturin, A. A.; Mikhailov, I. F.; Reshetnyak, M. V.; Borisova, S. S.; Bogdanov, Yu. S.
    The paper describes the growth features of thin Ti-Zr-Ni films prepared by the method of magnetron sputtering of the targets with compositions Ti₅₃Zr₃₀Ni₁₈ and Ti₄₁Zr₃₈.₃Ni₂₀.₇ on the substrates at 300 K with subsequent annealing in vacuum. The formation peculiarities of phase composition, structure and thermal stability of quasicrystalline thin films were studied. It was established that in initial state the films were X-ray-amorphous or nanocrystalline with coherence lengths (according to Scherrer) near 1.6-1.8 nm independently on the element composition of the sputtered target. This structure is relatively stable up to the temperature 673 K when the formation of the quasi-crystalline phase begins. In the films with composition of Ti₅₃Zr₃₀Ni₁₈. It is added with an admixture of the 1/1 W-crystal approximant phase. In the films with Ti₄₁Zr₃₈.₃Ni₂₀.₇ composition, an optimal annealing temperature is between 823 K and 873 K. Additionally, for the first time, the data on the formation of 2/1 approximant crystal as an admixture phase in this system were obtained. Under annealing at the temperatures higher than 873 K, the decomposition of the quasi-crystalline and approximant phases into crystalline phases stable at higher temperatures according to the equilibrium phase diagram was established.
  • Ескіз
    Документ
    On application of X-ray approximation method for studying the substructure of sufficiently perfect samples
    (Institute for Single Crystals, 2017) Malykhin, S. V.; Garkusha, I. E.; Makhlay, V. A.; Surovitsky, S. V.; Reshetnyak, M. V.; Borisova, S. S.
    The technique of X-ray diffraction investigation of coherence length and micro-strain level using approximation of diffraction line profiles by Gaussian and Cauchy functions as well as by harmonic analysis has been worked out for tungsten samples with quite perfect structure. The importance of right choice of a standard for obtaining the reasonable measurement results has been demonstrated. For the first approximation the possibility to use the spectral line width for calculation of the reflection true (physical) broadening has been shown. The contributions of basic instrumental factors into the reflection geometric broadening were estimated.