Кафедра "Матеріалознавство"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/6927

Офіційний сайт кафедри http://web.kpi.kharkov.ua/mtrlvd

Від 2007 року кафедра має назву "Матеріалознавство", первісна назва – "Металознавство та термічна обробка металів".

Кафедра "Металознавство та термічна обробка металів" створена у 1932 році. Першим її очільником став доктор технічних наук, професор Олександр Володимирович Терещенко.

Кафедра являє собою одну із найстаріших в політехнічному інституті з підготовки інженерів-технологів-дослідників. Своїми науковими дослідженнями. з початку своєї діяльності, кафедра сприяла розвитку та удосконаленню технологій термічної та хіміко-термічної обробки деталей на підприємствах України».

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 9 кандидатів технічних наук, 3 кандидата фізико-математичних наук, 1 доктор філософії; 1 співробітник має звання професора, 8 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 15
  • Ескіз
    Документ
    Influence of Bias Potential Magnitude on Structural Engineering of ZrN-Based Vacuum-Arc Coatings
    (Vasyl Stefanyk Precarpathian National University, 2021) Sobol, O. V.; Postelnyk, H. O.; Pinchuk, N. V.; Meylekhov, A. A.; Zhadko, M. A.; Andreev, A. A.; Stolbovoy, V. A.
    The creation of the scientific foundations for the structural engineering of ultrathin nanolayers in multilayer nanocomposites is the basis of modern technologies for the formation of materials with unique functional properties. It is shown that an increase in the negative bias potential (from -70 to -220 V) during the formation of vacuum-arc nanocomposites based on ZrN makes it possible not only to control the preferred orientation of crystallites and substructural characteristics, but also changes the conditions for conjugation of crystal lattices in ultrafine (about 8 nm) nanolayers.
  • Ескіз
    Документ
    The Use of Negative Bias Potential for Structural Engineering of Vacuum-Arc Nitride Coatings Based on FeCoNiCuAlCrV High-Entropy Alloy
    (Sumy State University, 2018) Sobol, O. V.; Andreev, A. A.; Gorban, V. F.; Meylekhov, A. A.; Postelnуk, A. A.; Stolbovoy, V. A.; Zvyagolskiy, A. V.
    The effect of negative bias potential (Ub = – 40, – 110, and – 200 V) upon the deposition of multielement coatings on their composition, structure, and mechanical properties was studied. It is shown that when using a high-entropy multielement (of 7 elements) FeCoNiCuAlCrV alloy, it is possible to obtain a single-phase nitride (FeCoNiCuAlCrV)N. Nitride has an fcc crystal lattice (structural type NaCl). It has been established that with an increase in Ub in the structural state occurs transition from practically nontextured (polycrystalline) to the preferential orientation of the growth of crystallites with the [111] texture axis (at Ub = – 110 V) and [110] (at Ub = – 200 V). This is accompanied by a decrease in the lattice period, as well as a decrease in hardness and modulus of elasticity. For coatings (FeCoNiCuAlCrV) N, the highest hardness of 38 GPa is achieved by using the smallest (– 40 V) bias potential during the deposition process. It is shown that to achieve high hardness at high Ub it is necessary to increase the content in the highentropy alloy of elements with high nitride-forming ability.
  • Ескіз
    Документ
    Mixing on the Boundaries of Layers of Multilayer Nanoperiod Coatings of the TiNх/ZrNх System: Simulation and Experiment
    (Sumy State University, 2017) Sobol, O. V.; Meylekhov, A. A.; Mygushchenko, R. P.; Postelnyk, A. A.; Sagaidashnikov, Yu. Ye.; Stolbovoy, V. A.
    Using the complex of methods for attestation of the structural state in combination with computer simulation and measurement of mechanical properties (hardness), the influence of the period Λ on the mixing process on the interlayer boundaries of multilayer coatings TiNх/ZrNх is studied. The formation of two phases (TiN and ZrN) with one type of crystal lattice (structural type NaCl) is identified in the layers of multiperiodic compositions TiNx/ZrNx with a period of Λ = 20 ... 300 nm. At Λ = 10 nm, the formation of a solid solution (Zr, Ti)N, as well as a small volume of the TiN phase is revealed on XRD spectras. The presence of TiN component is due to the larger initial value of the layer based on titanium nitride. To explain the results obtained, the results of computer simulation of damage at the atomic level during bombardment by ions accelerated in the Ub field are used. The critical thickness of mixing (about 7 nm) in the TiNx/ZrNx system is determined upon condition that Ub = – 110 V. It is established that a decrease in the period from 300 to 20 nm leads to increase in hardness. The highest hardness of 44.8 GPa corresponds to the superhard state. It is established that the critical thickness of radiation-stimulated defect formation has a significant effect on the stress-strain state and hardness of coatings with a small Λ ≈ 10 nm. In this case, relaxation of the stress-strain compression state occurs and the hardness decreases. However, the formation of a solid solution, while retaining part of the unreacted layer of titanium nitride at Λ = 10 nm, makes it possible to obtain an ultrahigh (44.8 GPa) hardness of the coating.
  • Ескіз
    Документ
    Structure, Substructure, Hardness and Adhesion Strength of Multiperiod Composite Coatings MoN / CrN
    (Sumy State University, 2015) Grankin, S. S.; Beresnev, V. M.; Sobol, O. V.; Stolbovoy, V. A.; Novikov, V. Yu.; Lytovchenko, S. V.; Nyemchenko, U. S.; Meylekhov, A. A.; Kovaleva, M. G.; Postelnyk, A. A.; Toryanik, I. N.
    A comprehensive study of the influence of the thickness of the layers, Us and PN on the structural engineering to obtain high mechanical properties in multilayer composite MoN / CrN vacuum-arc coatings has been conducted by means of scanning electron microscopy with energy analysis, X-ray diffraction studies microindentation and scratch testing methods. It has been determined that in the studied Torr, the content of nitrogen in the coatings varies from 6.3 to 33 at. %, which leads even at the greatest nitrogen content to the formation of lower phase by nitrogen and isostructural CrN with the vacant sites in the nitrogen sublattice. The increase of thickness of the layers applied on the substrate in a stationary state promotes the increase of nitrogen content. Along with this, the lowest microdeformation and the average size of crystallites are formed at Ub = – 300 V, which defines the achievement of greater hardness of 35 GPa and high adhesion strength, which resists the destruction, Lc5 = 187.6 N.
  • Ескіз
    Документ
    The Influence of Layer Thickness and Deposition Conditions on Structural State of NbN/Cu Multilayer Coatings
    (Sumy State University, 2019) Sobol, O. V.; Andreev, A. A.; Meylekhov, A. A.; Postelnyk, A. A.; Stolbovoy, V. A.; Ryshchenko, I. M.; Sagaidashnikov, Yu. Ye.; Kraievska, Zh. V.
    The influence of the main physical and technological factors of structural engineering (layer thickness, nitrogen atmosphere pressure and bias potential) on the structural-phase state of the NbN/Cu coatings was studied. It was established that with an increase in the thickness of niobium nitride layers from 8 to 40 nm (in the NbN/Cu multilayer composition), the phase composition changes from the metastable NbN (cubic crystal lattice, NaCl structural type) to the equilibrium ε-NbN phase with a hexagonal crystal lattice. At low pressure PN = 7·10 – 4 Torr in thin layers (about 8 nm thick), regardless of the Ub, the NbN phase is formed. The reason for the stabilization of this phase can be the uniformity of the metallic fcc crystal lattice of the δ-NbN phase with the Cu crystal lattice. As the pressure increases from РN = 7·10 – 4 Torr to 3·10 – 3 Torr, a more equilibrium ε-NbN phase with a hexagonal crystal lattice is formed. An increase in the bias potential during deposition from – 50 V to – 200 V mainly affects the change in the preferred orientation of crystallite growth. In thin layers of the NbN phase (about 8 nm), a crystallite texture with the [100] axis is formed. In layers with a thickness of 40-120 nm, crystallites of the NbN phase are predominantly formed with a hexagonal (004) plane parallel to the growth plane. At the greatest layer thickness (more than 250 nm), the NbN phase crystallites are predominantly formed with a (110) hexagonal lattice plane parallel to the growth plane. The results obtained show great potential for structural engineering in niobium nitride when it is used as a constituent layer of the NbN/Cu multilayer periodic system.
  • Ескіз
    Документ
    Structural Engineering Multiperiod Coating ZrN/MoN
    (Sumy State University, 2016) Sobol, O. V.; Meylekhov, A. A.; Stolbovoy, V. A.; Postelnyk, A. A.
    Using the method of structural engineering by changing the thickness of the layers in a multiperiod ZrN/MoN system investigated the effect of the phase-texture state of the crystallites and their size on the hardness of the vacuum-arc coating. Is revealed a determining influence on the formation of ZrN layers preferential orientation growth [100] axis with a small layer thickness 7-20 nm (the deposition of 3 to 10 seconds). At high layer thickness determines the texture [311] crystallites are - Mo2N phase formed in the Mo-N layers. Pulsed high-voltage stimulation without changing the type of structural states for different layer thicknesses, leads to partial disorientation texture in thick layers. Hardness of coating with thick (80 nm) layers is 35-37 GPa. In small thickness layers pulse stimulation of atoms motility causes the formation of a planar structure with an average crystallite size of 4-9 nm in the layers, which is accompanied by increased hardness of up to 44 GPa.
  • Ескіз
    Документ
    The Influence of Layers Thickness on the Structure and Properties of Bilayer Multiperiod Coatings Based on Chromium Nitride and Nitrides of Transition Metals Ti and Mo
    (Sumy State University, 2018) Sobol, O. V.; Meylekhov, A. A.; Mygushchenko, R. P.; Postelnyk, A. A.; Tabaza, Taha A.; Al- Qawabah, Safwan M.; Gorban, V. F.; Stolbovoy, V. A.
    The influence of the layers thickness of bilayer multi-period coatings of the CrNx/MoNx and CrNx/TiNx systems on their phase-structural state, substructure, stress-strain state and mechanical properties was studied using methods of precision structural analysis in combination with computer simulation of implantation processes during particle deposition. It is established that a two-phase structure of CrN and-Mo2N phases of the structural type NaCl is formed in the multi-period coatings of the CrNx/MoNx system with a nanometer thickness of the layers. Because of the small difference in periods (less than 0.5 %) for Λ = 20 nm, the layers form a coherent interlayer interface. The use of small Ub – 20 V during deposition makes it possible to avoid significant mixing at interlayer (interphase) boundaries even at the smallest Λ = 10 nm. Nitride layers formed under conditions of vacuum arc deposition are under the action of compressive stresses. In the СrNх/TiNх system, because of the relatively large discrepancy between periods (more than 2.5 %), during the formation of the same structural components in the layers (CrN and TiN phases of the structural type NaCl), the epitaxial growth with period adjusting does not occur, even for the smallest Λ = 10 nm. The action of the deformation factor at the interphase boundary allows achieving an ultrahard state (with a hardness of about 50 GPa), which causes a relatively low friction coefficient. The obtained results on the formation of phase-structural states with the nanoscale thickness of layers of multi-period nitride coatings are explained from the position of minimization of surface energy and deformation energy.
  • Ескіз
    Документ
    Structural Engineering of the Multilayer Vacuum Arc Nitride Coatings Based on Ti, Cr, Mo and Zr
    (Sumy State University, 2017) Sobol, O. V.; Postelnyk, A. A.; Meylekhov, A. A.; Andreev, A. A.; Stolbovoy, V. A.; Gorban, V. F.
    The possibilities of structural engineering of multi-period vacuum-arc coatings based on nitrides of transition metals Ti, Cr, Mo, and Zr have been investigated by structural studies (X-ray diffraction and electron microscopy) in combination with measurement of hardness by indentation. The formation of phases with a cubic crystal lattice under nonequilibrium conditions under vacuum arc method of production. The supply of a negative bias potential of – 200V in mononitrides leads to the predominant formation of texture of crystallites with the [111] axis. The introduction of thin (about 10 nm) metal layers leads to a decrease in texture perfection [111] and texture formation [100]. This effect is associated with a change in the stress-strain state of nitride layers. It is determined that the composite multiperiod coatings (Me1N/Me2N)/(Me1/Me2) have a greater hardness and greater resistance compared to MeN/Me. For a multiperiod system with damping metal layers – (ZrN/CrN)/(Zr/Cr), superhard coatings with a hardness of 46 GPa were obtained.
  • Ескіз
    Документ
    А Computer Simulation of Radiation-Induced Structural Changes and Properties of Multiperiod ZrNₓ/MoNₓ System
    (Sumy State University, 2017) Sobol, O. V.; Meylekhov, A. A.; Bochulia, T. V.; Stolbovoy, V. A.; Gorban, V. F.; Postelnyk, A. A.; Shevchenko, S. M.; Yanchev, A. V.
    Influence of the period value Λ (at different negative potential Ub that supplied during deposition) on phase composition, structure, stress-strain state and hardness of multiperiod coatings ZrNₓ/MoNₓ is investigated by using complex methods of validation structural state at combined with microindentation. Formation in layers ZrNx and MoNx the phases with cubic lattice and preferred orientation of crystallites with axis [100] is established. Stress-strain state of compression with increasing Ub is amplified and reaches maximum value (– 6.7 GPa) at Λ = 20 nm and Ub – 110 V. Hardness of coating increases with decreasing Λ from 300 to 20 nm. Coatings that obtained with Λ = 20 nm and Ub – 110 V have the highest hardness 44 GPa. Relaxation of structural compressive stresses and decreasing hardness is happening at smaller Λ and larger Ub – 110 V (as a result of radiation-stimulated forming defect and mixing). Data of computer modeling of defectiveness at atomic level at bombardment of ions that accelerated in field Ub are used to explain the results.
  • Ескіз
    Документ
    Influence of the magnitude of the bias potential and thickness of the layers on the structure, substructure, stress-deformed state and mechanical (TiMo)N/(TiSi)N coatingsl characteristics of vacuum-arc multi-layered
    (2020) Sobol, O. V.; Postelnyk, H. O.; Meylekhov, A. A.; Subbotina, V. V.; Stolbovoy, V. A.; Dolomanov, A. V.; Kolesnikov, D. A.; Kovaleva, M. G.; Sukhorukova, Yu. V.
    Layers based on titanium nitride doped with molybdenum and silicon were used to create a multilayer composite. In this case, the mismatch between the lattice periods of (TiMo)N and (TiSi)N layers was about 1%. It was found that in the (TiMo)N/(TiSi)N multilayer composite, such a mismatch of the periods in the constituent layers does not change the single-phase state of the composite even at relatively large layer thicknesses (about 350 nm). The creation of a (TiMo)N/(TiSi)N composite with a nanometer layer thickness allows one to reduce the magnitude of macrostresses (a large value of which is characteristic of single-layer (TiMo)N coatings) and change the substructural characteristics in a wide range of values. It has been established that the use of multi-element (TiMo)N and (TiSi)N layers in a multilayer coating design allows one to achieve a high-hard state with high adhesive strength and good tribological characteristics. The highest properties (hardness – 34.8 GPa and adhesive strength 166.09 N) were achieved in coatings obtained at Ub = -200 V and a layer thickness of 80 nm, which are characterized by compression macrostresses of 7.85 GPa and microstrains 0.75%.