Кафедра "Матеріалознавство"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/6927
Офіційний сайт кафедри http://web.kpi.kharkov.ua/mtrlvd
Від 2007 року кафедра має назву "Матеріалознавство", первісна назва – "Металознавство та термічна обробка металів".
Кафедра "Металознавство та термічна обробка металів" створена у 1932 році. Першим її очільником став доктор технічних наук, професор Олександр Володимирович Терещенко.
Кафедра являє собою одну із найстаріших в політехнічному інституті з підготовки інженерів-технологів-дослідників. Своїми науковими дослідженнями. з початку своєї діяльності, кафедра сприяла розвитку та удосконаленню технологій термічної та хіміко-термічної обробки деталей на підприємствах України».
Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".
У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 9 кандидатів технічних наук, 3 кандидата фізико-математичних наук, 1 доктор філософії; 1 співробітник має звання професора, 8 – доцента, 1 – старшого наукового співробітника.
Переглянути
Результати пошуку
Документ The Use of Negative Bias Potential for Structural Engineering of Vacuum-Arc Nitride Coatings Based on FeCoNiCuAlCrV High-Entropy Alloy(Sumy State University, 2018) Sobol, O. V.; Andreev, A. A.; Gorban, V. F.; Meylekhov, A. A.; Postelnуk, A. A.; Stolbovoy, V. A.; Zvyagolskiy, A. V.The effect of negative bias potential (Ub = – 40, – 110, and – 200 V) upon the deposition of multielement coatings on their composition, structure, and mechanical properties was studied. It is shown that when using a high-entropy multielement (of 7 elements) FeCoNiCuAlCrV alloy, it is possible to obtain a single-phase nitride (FeCoNiCuAlCrV)N. Nitride has an fcc crystal lattice (structural type NaCl). It has been established that with an increase in Ub in the structural state occurs transition from practically nontextured (polycrystalline) to the preferential orientation of the growth of crystallites with the [111] texture axis (at Ub = – 110 V) and [110] (at Ub = – 200 V). This is accompanied by a decrease in the lattice period, as well as a decrease in hardness and modulus of elasticity. For coatings (FeCoNiCuAlCrV) N, the highest hardness of 38 GPa is achieved by using the smallest (– 40 V) bias potential during the deposition process. It is shown that to achieve high hardness at high Ub it is necessary to increase the content in the highentropy alloy of elements with high nitride-forming ability.Документ Mixing on the Boundaries of Layers of Multilayer Nanoperiod Coatings of the TiNх/ZrNх System: Simulation and Experiment(Sumy State University, 2017) Sobol, O. V.; Meylekhov, A. A.; Mygushchenko, R. P.; Postelnyk, A. A.; Sagaidashnikov, Yu. Ye.; Stolbovoy, V. A.Using the complex of methods for attestation of the structural state in combination with computer simulation and measurement of mechanical properties (hardness), the influence of the period Λ on the mixing process on the interlayer boundaries of multilayer coatings TiNх/ZrNх is studied. The formation of two phases (TiN and ZrN) with one type of crystal lattice (structural type NaCl) is identified in the layers of multiperiodic compositions TiNx/ZrNx with a period of Λ = 20 ... 300 nm. At Λ = 10 nm, the formation of a solid solution (Zr, Ti)N, as well as a small volume of the TiN phase is revealed on XRD spectras. The presence of TiN component is due to the larger initial value of the layer based on titanium nitride. To explain the results obtained, the results of computer simulation of damage at the atomic level during bombardment by ions accelerated in the Ub field are used. The critical thickness of mixing (about 7 nm) in the TiNx/ZrNx system is determined upon condition that Ub = – 110 V. It is established that a decrease in the period from 300 to 20 nm leads to increase in hardness. The highest hardness of 44.8 GPa corresponds to the superhard state. It is established that the critical thickness of radiation-stimulated defect formation has a significant effect on the stress-strain state and hardness of coatings with a small Λ ≈ 10 nm. In this case, relaxation of the stress-strain compression state occurs and the hardness decreases. However, the formation of a solid solution, while retaining part of the unreacted layer of titanium nitride at Λ = 10 nm, makes it possible to obtain an ultrahigh (44.8 GPa) hardness of the coating.Документ The Influence of Layer Thickness and Deposition Conditions on Structural State of NbN/Cu Multilayer Coatings(Sumy State University, 2019) Sobol, O. V.; Andreev, A. A.; Meylekhov, A. A.; Postelnyk, A. A.; Stolbovoy, V. A.; Ryshchenko, I. M.; Sagaidashnikov, Yu. Ye.; Kraievska, Zh. V.The influence of the main physical and technological factors of structural engineering (layer thickness, nitrogen atmosphere pressure and bias potential) on the structural-phase state of the NbN/Cu coatings was studied. It was established that with an increase in the thickness of niobium nitride layers from 8 to 40 nm (in the NbN/Cu multilayer composition), the phase composition changes from the metastable NbN (cubic crystal lattice, NaCl structural type) to the equilibrium ε-NbN phase with a hexagonal crystal lattice. At low pressure PN = 7·10 – 4 Torr in thin layers (about 8 nm thick), regardless of the Ub, the NbN phase is formed. The reason for the stabilization of this phase can be the uniformity of the metallic fcc crystal lattice of the δ-NbN phase with the Cu crystal lattice. As the pressure increases from РN = 7·10 – 4 Torr to 3·10 – 3 Torr, a more equilibrium ε-NbN phase with a hexagonal crystal lattice is formed. An increase in the bias potential during deposition from – 50 V to – 200 V mainly affects the change in the preferred orientation of crystallite growth. In thin layers of the NbN phase (about 8 nm), a crystallite texture with the [100] axis is formed. In layers with a thickness of 40-120 nm, crystallites of the NbN phase are predominantly formed with a hexagonal (004) plane parallel to the growth plane. At the greatest layer thickness (more than 250 nm), the NbN phase crystallites are predominantly formed with a (110) hexagonal lattice plane parallel to the growth plane. The results obtained show great potential for structural engineering in niobium nitride when it is used as a constituent layer of the NbN/Cu multilayer periodic system.Документ The Influence of Layers Thickness on the Structure and Properties of Bilayer Multiperiod Coatings Based on Chromium Nitride and Nitrides of Transition Metals Ti and Mo(Sumy State University, 2018) Sobol, O. V.; Meylekhov, A. A.; Mygushchenko, R. P.; Postelnyk, A. A.; Tabaza, Taha A.; Al- Qawabah, Safwan M.; Gorban, V. F.; Stolbovoy, V. A.The influence of the layers thickness of bilayer multi-period coatings of the CrNx/MoNx and CrNx/TiNx systems on their phase-structural state, substructure, stress-strain state and mechanical properties was studied using methods of precision structural analysis in combination with computer simulation of implantation processes during particle deposition. It is established that a two-phase structure of CrN and-Mo2N phases of the structural type NaCl is formed in the multi-period coatings of the CrNx/MoNx system with a nanometer thickness of the layers. Because of the small difference in periods (less than 0.5 %) for Λ = 20 nm, the layers form a coherent interlayer interface. The use of small Ub – 20 V during deposition makes it possible to avoid significant mixing at interlayer (interphase) boundaries even at the smallest Λ = 10 nm. Nitride layers formed under conditions of vacuum arc deposition are under the action of compressive stresses. In the СrNх/TiNх system, because of the relatively large discrepancy between periods (more than 2.5 %), during the formation of the same structural components in the layers (CrN and TiN phases of the structural type NaCl), the epitaxial growth with period adjusting does not occur, even for the smallest Λ = 10 nm. The action of the deformation factor at the interphase boundary allows achieving an ultrahard state (with a hardness of about 50 GPa), which causes a relatively low friction coefficient. The obtained results on the formation of phase-structural states with the nanoscale thickness of layers of multi-period nitride coatings are explained from the position of minimization of surface energy and deformation energy.Документ Using a Bias Potential in a Constant and Pulse Modes for Structural Engineering Vacuum Arc Nanocrystalline Coatings of Zirconium Nitride(Сумский государственный университет, 2014) Sobol’, O. V.; Andreev, A. A.; Stolbovoy, V. A.; Gorban’, V. F.; Pinchuk, N. V.; Meylekhov, A. A.In order to develop the direction of "structural engineering nitride coatings" in the work conducted systematic analysis of the impact of the negative bias potential (direct and high-voltage pulse) on the structure, substructure and mechanical properties of ZrN coatings obtained by vacuum arc evaporation. Defined boundary value of (– 100 V) DC potential applied to the substrate, below which a high-voltage pulse potential (– 1200 ... – 2000 V quantity that allows to form peaks bias) makes a decisive contribution to the formation of preferred orientation of the crystallites with the [110] axis. The highest values of hardness 43 GPa are achieved at a constant potential -70 V. Supply high-voltage pulse shifts the maximum hardness in the direction of a greater value of the constant potential.Документ The effects of nitrogen atmosphere pressure, constant and high-voltage pulse potentials of the substrate on the structure and properties of vacuum-arc ZrN coatings(Национальный научный центр "Харьковский физико-технический институт", 2015) Sobol’, O. V.; Andreev, A. A.; Stolbovoy, V. A.; Gorban’, V. F.; Pinchuk, N. V.; Meylekhov, A. A.ZrN-phase coatings with a cubic lattice (NaCl structure type) were produced by the method of vacuum-arc evaporation of a Zr cathode in nitrogen atmosphere at pressures PN between 0.02 and 0.64 Pa. The pressure increase at a bias potential of -150 V leads to formation of the growth texture [111] or to appearance of the bitextural state with the axes [111] and [311]. Additional pulsed-mode supply of high-voltage negative potential Uip = 800…2000 V, with pulse duration of 10 μs and frequency of 7 kHz, stimulates the emergence of texture [110]. At the substructure level, the Uip supply causes the microstrain relaxation and the crystallite size growth with increasing pressure. The observed changes are attributed to increased particle mobility and nitride formation activity under the action of Uip. The hardness increases with increasing pressure and reaches a value of 43 GPa. The Uip supply leads to a shift of the maximum hardness towards higher pressures.