Кафедра "Матеріалознавство"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/6927

Офіційний сайт кафедри http://web.kpi.kharkov.ua/mtrlvd

Від 2007 року кафедра має назву "Матеріалознавство", первісна назва – "Металознавство та термічна обробка металів".

Кафедра "Металознавство та термічна обробка металів" створена у 1932 році. Першим її очільником став доктор технічних наук, професор Олександр Володимирович Терещенко.

Кафедра являє собою одну із найстаріших в політехнічному інституті з підготовки інженерів-технологів-дослідників. Своїми науковими дослідженнями. з початку своєї діяльності, кафедра сприяла розвитку та удосконаленню технологій термічної та хіміко-термічної обробки деталей на підприємствах України».

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 9 кандидатів технічних наук, 3 кандидата фізико-математичних наук, 1 доктор філософії; 1 співробітник має звання професора, 8 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 4 з 4
  • Ескіз
    Документ
    Influence of the magnitude of the bias potential and thickness of the layers on the structure, substructure, stress-deformed state and mechanical (TiMo)N/(TiSi)N coatingsl characteristics of vacuum-arc multi-layered
    (2020) Sobol, O. V.; Postelnyk, H. O.; Meylekhov, A. A.; Subbotina, V. V.; Stolbovoy, V. A.; Dolomanov, A. V.; Kolesnikov, D. A.; Kovaleva, M. G.; Sukhorukova, Yu. V.
    Layers based on titanium nitride doped with molybdenum and silicon were used to create a multilayer composite. In this case, the mismatch between the lattice periods of (TiMo)N and (TiSi)N layers was about 1%. It was found that in the (TiMo)N/(TiSi)N multilayer composite, such a mismatch of the periods in the constituent layers does not change the single-phase state of the composite even at relatively large layer thicknesses (about 350 nm). The creation of a (TiMo)N/(TiSi)N composite with a nanometer layer thickness allows one to reduce the magnitude of macrostresses (a large value of which is characteristic of single-layer (TiMo)N coatings) and change the substructural characteristics in a wide range of values. It has been established that the use of multi-element (TiMo)N and (TiSi)N layers in a multilayer coating design allows one to achieve a high-hard state with high adhesive strength and good tribological characteristics. The highest properties (hardness – 34.8 GPa and adhesive strength 166.09 N) were achieved in coatings obtained at Ub = -200 V and a layer thickness of 80 nm, which are characterized by compression macrostresses of 7.85 GPa and microstrains 0.75%.
  • Ескіз
    Документ
    Regularities of the influence of microarc oxidation of aluminum alloys on the phase-structural state of the formed oxide coatings and the peculiarities of γ-Al₂O₃ → α-Al₂O₃ polymorphic transformation during their annealing
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Sоbоl, Oleg; Subbotina, V. V.
    The influence of the technological parameters of microarc oxidation on the regularities of the phase-structural state of coatings formed on D16 aluminum alloys (the main alloying element is Cu) and AMg3 (the main alloying element is Mg) and the effect of annealing in the temperature range 600–1280 °C on the γ-Al₂O₃ → α-Al₂O₃ phase transformation are investigated. It was found that in the coatings formed during microarc oxidation in a complex (alkaline-silicate) electrolyte, three main phase-structural states are revealed: γ-Al₂O₃, α-Al₂O₃ and mullite (3Al₂O₃·2SiO₂). The conditions of electrolysis allowing the formation of a two-phase state (γ-Al₂O₃ and α-Al₂O₃) on alloys of both types have been determined. It has been established that alloying elements of the AMg3 alloy provide in MAO coatings a higher stability of the γ-Al₂O₃ structure in comparison with the analogous state in MAO coatings on D16 alloy. High-temperature annealing of MAO coatings made it possible to reveal a more complete phase transformation on D16 alloy, the structural basis of which is the appearance of tetragonality in the defective cubic lattice of the γ-Al₂O₃ phase. Annealing of MAO coatings stimulates the γ → α transformation with the greatest dynamics of change in the coatings obtained on D16 alloy. At the highest annealing temperature of 1280 °C (for 60 min) as a result of γ→α transformation, the relative content of the α-Al₂O₃ phase in the coating is 89 % (coating obtained on D16 alloy) and 30 % (coating obtained on AMg3 alloy). A model of the polymorphic γ-Al₂O₃ → α-Al₂O₃ transformation in aluminum oxide is proposed, based on the ordering of the metal cationic subsystem in octahedral and tetrahedral internodes and the enhancement of this process upon the weakening of the “metal–oxygen” bond as a result of the replacement of Al ions by Cu ions that have a low binding energy with oxygen. A correlation between the relative content of the α-Al₂O₃ phase and the hardness of the MAO coating was found. With the highest content of the α-Al₂O₃ phase, the hardness reaches 16000 MPa.
  • Ескіз
    Документ
    Changes in the structural state and properties of vacuum-arc coatings based on high-entropy alloy TiZrHfNbTa under the influence of nitrogen pressure and bias potential at deposition
    (2018) Sobol, O. V.; Andreev, A. A.; Mygushchenko, R. P.; Gorban, V. F.; Stolbovoy, V. A.; Meylekhov, A. A.; Subbotina, V. V.; Kovteba, D. V.; Zvyagolsky, A. V.; Vuets, A. E.
    Complex studies have been carried out on the effect of nitrogen pressure and the negative bias potential on the structure and properties of vacuum-arc nitride coatings based on the high-entropy alloy TiZrHfNbTa. It is defined that the change in pressure during deposition (in the range 0.01...4 mTorr) mainly affects the nitrogen atoms content in the coating. The feed of a negative bias potential to the substrate (Ub = -50...-250 V) makes it possible to control the content of the metallic component using the effect of selective sputtering of atoms in the formation of coatings. Determined, that as the pressure increases the structural state associated with the predominant growth orientation (axial texture) of the crystallites changes. The texture changes in the sequence [311] → [311] + [111] → [111] with increasing pressure for a six-element (TiZrHfVNbTa)N nitride and the texture state changes in the sequence [110] → [110] + [111] → [111] for a five-element (TiZrHfNbTa)N nitride. It is shown that the presence of a bi-textured state in the coating makes it possible to achieve an ultrahard state with a hardness exceeding 50 GPa.
  • Ескіз
    Документ
    Use of the method of micro-arc plasma oxidation to increase the antifriction properties of the titanium alloy surface
    (Сумський державний університет, 2019) Subbotina, V. V.; Sobol, O. V.; Belozerov, V. V.; Makhatilova, A. I.; Shnayder, V. V.
    The analysis of possibilities on phase-structural engineering of titanium-based alloys during micro-arc plasma oxidation (MAO) is carried out. The influence of phase-structural states on the tribotechnical properties of the modified surface of the titanium alloy VT3-1 is also considered. It has been established that in order to achieve high functional properties, it is necessary to use electrolytes of complex composition for MAO. The presence in the electrolyte of (NaPO₃)₆ leads to the formation of anatase with a low hardness (about 3 GPa). The formation of crystallites of rutile and aluminum titanate with the use of alkaline-aluminum electrolyte allows to increase hardness significantly (up to 7 GPa). The maximum increase in hardness (up to 12 GPa) is achieved in the coating obtained in alkaline-aluminate-silicate electrolyte. This is due to the formation of crystalline mullite. The friction coefficient of such a material decreases (f ‹ 0.01) and as a result, antifriction properties increase. The results of the work indicate the prospects for using the phase-structural engineering method for MAO-processing to optimize the formation of antifriction coatings on titanium alloys.