Кафедра "Матеріалознавство"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/6927

Офіційний сайт кафедри http://web.kpi.kharkov.ua/mtrlvd

Від 2007 року кафедра має назву "Матеріалознавство", первісна назва – "Металознавство та термічна обробка металів".

Кафедра "Металознавство та термічна обробка металів" створена у 1932 році. Першим її очільником став доктор технічних наук, професор Олександр Володимирович Терещенко.

Кафедра являє собою одну із найстаріших в політехнічному інституті з підготовки інженерів-технологів-дослідників. Своїми науковими дослідженнями. з початку своєї діяльності, кафедра сприяла розвитку та удосконаленню технологій термічної та хіміко-термічної обробки деталей на підприємствах України».

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 9 кандидатів технічних наук, 3 кандидата фізико-математичних наук, 1 доктор філософії; 1 співробітник має звання професора, 8 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 6 з 6
  • Ескіз
    Документ
    Use of the method of micro-arc plasma oxidation to increase the antifriction properties of the titanium alloy surface
    (Сумський державний університет, 2019) Subbotina, V. V.; Sobol, O. V.; Belozerov, V. V.; Makhatilova, A. I.; Shnayder, V. V.
    The analysis of possibilities on phase-structural engineering of titanium-based alloys during micro-arc plasma oxidation (MAO) is carried out. The influence of phase-structural states on the tribotechnical properties of the modified surface of the titanium alloy VT3-1 is also considered. It has been established that in order to achieve high functional properties, it is necessary to use electrolytes of complex composition for MAO. The presence in the electrolyte of (NaPO₃)₆ leads to the formation of anatase with a low hardness (about 3 GPa). The formation of crystallites of rutile and aluminum titanate with the use of alkaline-aluminum electrolyte allows to increase hardness significantly (up to 7 GPa). The maximum increase in hardness (up to 12 GPa) is achieved in the coating obtained in alkaline-aluminate-silicate electrolyte. This is due to the formation of crystalline mullite. The friction coefficient of such a material decreases (f ‹ 0.01) and as a result, antifriction properties increase. The results of the work indicate the prospects for using the phase-structural engineering method for MAO-processing to optimize the formation of antifriction coatings on titanium alloys.
  • Ескіз
    Документ
    Effect of electrolysis regimes on the structure and properties of coatings on aluminum alloys formed by anode-cathode microarc oxidation
    (Технологічний центр, 2018) Belozerov, V.; Sobol, O.; Mahatilova, A.; Subbotina, V.; Tabaza, Taha A.; Al-Qawabah, Safwan M.; Al-Qawabeha, Ubeidulla F.
    Наведено результати дослідження фазового складу і властивостей МДО-покриттів на алюмінієвих сплавах. Покриття були одержані в лужно-селікатному електроліті на змінному сінусоідальному струмі і в імпульсному режимі струму. Показано, що підвищена щільність мікророзрядів при імпульсної технології збільшує сумарну енергію, що виділяється в них. Це обумовлює підвищення швидкості зростання оксидного покриття і ймовірність утворення α-Al₂O₃ фази. Одержані при мікроплазмове оксидуванні в імпульсному струмовому режимі покриття мають високу твердість і електричну міцність
  • Ескіз
    Документ
    The influence of the conditions of microplasma processing (microarc oxidation in anode-cathode regime) of aluminum alloys on their phase composition
    (Технологічний центр, 2017) Belozerov, V.; Sobol, O.; Mahatilova, A.; Subbotina, V.; Tabaza, Taha A.; Al-Qawabeha, Ubeidulla F.; Al-Qawabah, Safwan M.
    Наведено дослідження щодо впливу режимів мікроплазмового оксидування в активованих додатками електролітах на фазово-структурний стан покриттів, що формуються на основі алюмінію. Виявлено багато-стадийность фазоутворення в процесі формування покриттів на алюмінієвих сплавах в лужно-силікатном електроліті i анодно-катодному режимі мікроплазмового оксидування. Показано вплив кристаллохімічних характеристик катіонів оброблюваного сплаву і катіонів, що входять до складу електроліту, на процес перетворення γ-Al₂O₃→α-Al₂O₃.
  • Ескіз
    Документ
    Investigation of the influence of technological conditions of microarc oxidation of magnesium alloys on their structural state and mechanical properties
    (Технологічний центр, 2017) Belozerov, V.; Mahatilova, A.; Sobol, O.; Subbotina, V.; Subbotin, A.
    Наведені дослідження структури і властивостей покриттів, отриманих при мікродуговій обробці на магнієвому сплаві. Обробка проводилася при анодно-катодному режимі в лужному електроліті з різними домішками. Показана можливість формування кристалічних оксидних покриттів різного фазового складу (MgO, MgAl₂O₄, Mg₂Sі₄, Mg₃(PO₄)₂) товщиною до 300 мкм, що мають високу адгезію з основою, гарні захисні властивості і високу твердість, яка досягає 6,6 ГПа.
  • Ескіз
    Документ
    Підвищення корозійної стійкості магнієвих сплавів мікродуговою обробкою
    (Національний технічний університет "Харківський політехнічний інститут", 2015) Білозеров, Валерій Володимирович; Махатілова, Г. І.; Субботіна, Валерія Валеріївна
  • Ескіз
    Документ
    Influence of the thermal factor on the composition of electron-beam high-entropy ALTiVCrNbMo coatings
    (Технологический центр, 2018) Sobol, O. V.; Barmin, A. E.; Hryhorieva, S. V.; Gorban, V. F.; Vuets, A. E.; Subbotin, A. V.
    This paper reports results of studying the element and phase compositions of electron-beam coatings based on the high-entropy alloy AlTiVCrNbMo, depending on the deposition temperature (in the range of 300...700 °С). The high-entropy alloys were melted in an arc furnace in an atmosphere of high-purity argon. Vacuum condensates of the high-entropy alloy (AlTiVCrNbMo) with a thickness of 3–5 µm were obtained in the vacuum setup UVN-2M-1 at a working vacuum of 5·10-5 mТоrr. The alloy evaporation was performed from the water-cooled ingot mold using an electron-beam gun with a power of 5 kW. Condensation of vapors of all the elements of the alloy was performed onto copper substrates at temperatures of 300, 500, 700 °C. Based on analysis of the element composition of materials of the target made of the high-entropy six-element alloy AlTiVCrNbMo and electron-beam coatings, based on it, we established the critical parameter (specific heat of vaporization of an element) that defined a selective change in the element composition. In accordance with a characteristic change in the composition of coatings of the multi-element high-entropy alloy, 3 groups of elements were distinguished: with a specific heat of evaporation of 280...350 kJ/mol (group 1), 420…460 kJ/mol (group 2), and 590…680 kJ/mol (group 3). It was shown that the formation of a single-phase coating of the high-entropy alloy (based on BCC of the crystalline lattice) occurs at the higher deposition temperature of 500...700 °C when the coating consists of not less than 5 elements. It was established that based on the conditions for an electron-beam process of materials formation, the results obtained can be divided into two types: those determined by the condition of evaporation of the target and those determined by the conditions of coating deposition. The density of flows of elements, evaporated from the target, is determined by their specific heat of evaporation. However, the ratio of atoms in the flow, derived in this way, may not be retained in the formed coating due to the secondary evaporation of elements from the growth surface. The obtained results allow us to substantiate principles for the selection of components for achieving the optimal element and phase compositions of high-entropy alloys.