Кафедра "Матеріалознавство"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/6927

Офіційний сайт кафедри http://web.kpi.kharkov.ua/mtrlvd

Від 2007 року кафедра має назву "Матеріалознавство", первісна назва – "Металознавство та термічна обробка металів".

Кафедра "Металознавство та термічна обробка металів" створена у 1932 році. Першим її очільником став доктор технічних наук, професор Олександр Володимирович Терещенко.

Кафедра являє собою одну із найстаріших в політехнічному інституті з підготовки інженерів-технологів-дослідників. Своїми науковими дослідженнями. з початку своєї діяльності, кафедра сприяла розвитку та удосконаленню технологій термічної та хіміко-термічної обробки деталей на підприємствах України».

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 9 кандидатів технічних наук, 3 кандидата фізико-математичних наук, 1 доктор філософії; 1 співробітник має звання професора, 8 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    The Use of Negative Bias Potential for Structural Engineering of Vacuum-Arc Nitride Coatings Based on FeCoNiCuAlCrV High-Entropy Alloy
    (Sumy State University, 2018) Sobol, O. V.; Andreev, A. A.; Gorban, V. F.; Meylekhov, A. A.; Postelnуk, A. A.; Stolbovoy, V. A.; Zvyagolskiy, A. V.
    The effect of negative bias potential (Ub = – 40, – 110, and – 200 V) upon the deposition of multielement coatings on their composition, structure, and mechanical properties was studied. It is shown that when using a high-entropy multielement (of 7 elements) FeCoNiCuAlCrV alloy, it is possible to obtain a single-phase nitride (FeCoNiCuAlCrV)N. Nitride has an fcc crystal lattice (structural type NaCl). It has been established that with an increase in Ub in the structural state occurs transition from practically nontextured (polycrystalline) to the preferential orientation of the growth of crystallites with the [111] texture axis (at Ub = – 110 V) and [110] (at Ub = – 200 V). This is accompanied by a decrease in the lattice period, as well as a decrease in hardness and modulus of elasticity. For coatings (FeCoNiCuAlCrV) N, the highest hardness of 38 GPa is achieved by using the smallest (– 40 V) bias potential during the deposition process. It is shown that to achieve high hardness at high Ub it is necessary to increase the content in the highentropy alloy of elements with high nitride-forming ability.
  • Ескіз
    Документ
    Structure and Properties of Vacuum-arc Coatings of Chromium and Its Nitrides Obtained under the Action of Constant and Pulse High-voltage Bias Potential
    (Sumy State University, 2017) Sobol, O. V.; Postelnyk, A. A.; Mygushchenko, R. P.; Al-Qawabeha, Ubeidulla F.; Tabaza, Taha A.; Al-Qawabah, Safwan M.; Gorban, V. F.; Stolbovoy, V. A.
    To reveal the regularities of structural engineering of vacuum-arc coatings based on chromium and its nitrides, the influence of the main physicotechnological factors (the pressure of the nitrogen atmosphere and the bias potential) in the formation of coatings was studied. It was discovered that during the deposition of chromium coatings the formation of the texture axis [100], as well as the macrodeformation of compression is happening. The supply of a high-voltage negative pulse potential to the substrate increases the mobility of the deposited atoms and leads to relaxation of the compression deformation. As the pressure increases from Torr, the phase composition of the coatings changes: Cr (JCPDS 06-0694) → Cr2N(JCPDS 35-0803) → CrN(JCPDS 11-0065). The supply of high-voltage pulses leads to the formation of a texture of crystallites with parallel growth surfaces planes having d ≈ 0.14 nm. The structure obtained by pulsed high-voltage action makes it possible to increase the hardness of the coating to 32 GPa and reduce the friction coefficient to 0.32 in the "chromium nitride-steel" system and to 0.11 in the "chromium nitride-diamond" system. The results obtained are explained from the viewpoint of increasing the mobility of atoms and the formation of cascades of displacements when using an additional high-voltage potential in the pulse form during the deposition of chromium-based coatings.
  • Ескіз
    Документ
    Influence of the Bias Potential and the Pressure of the Nitrogen Atmosphere on the Structure and Properties of Vacuum-arc Coatings Based on the AlCrTiZrNbV High-entropy Alloy
    (Sumy State University, 2018) Sobol, O. V.; Andreev, A. A.; Gorban, V. F.; Postelnyk, A. A.; Stolbovoy, V. A.; Zvyagolskiy, A. V.
    The effect of the constant bias potential (Ub) supplied to the substrate upon condensation and pressure of the nitrogen atmosphere (PN) on the elemental composition, growth morphology, texture, and physical-mechanical characteristics of vacuum-arc (AlCrTiVZrNb)Nx coatings is studied. It is established that with increasing Ub from – 110V to – 200V, the axis of preferential growth of crystallites of the fcc phase from [100] to [110] changes. Such a change is accompanied by a decrease in the hardness (H) and the ratio H/E (where E is the modulus of elasticity). The conditions for the formation of the preferential orientation of the crystallites (axial texture) of vacuum-arc (AlCrTiVZrNb)Nx coatings and the influence of texture on mechanical properties are discussed. It was established that the change in PN in the range Torr basically allows to vary the degree of filling of the coating with nitrogen atoms. Based on the revealed regularities, the conditions for achieving high hardness for vacuum-arc coatings of nitrides AlCrTiVZrNb high-entropy alloy are substantiated. Because of the presence in the alloy of elements with a relatively low heat of nitride formation, in order to achieve high hardness, it is necessary to use deposition conditions with relatively low energy of bombarding atoms. The use of a low Ub = –110 V at the highest pressure Torr allows achieving an superhard state with a hardness of 44 GPa.