Кафедра "Гідравлічні машини ім. Г. Ф. Проскури"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2767

Офіційний сайт кафедри http://web.kpi.kharkov.ua/gdm

Від 2021 року кафедра має назву "Гідравлічні машини імені Г. Ф. Проскури", попередня назва – "Гідравлічні машини" (від 1930 року).

Кафедра заснована на основі гідравлічної лабораторії у 1914 році академіком Г. Ф. Проскурою, первісна назва – кафедра гідромеханіки. У 1923 році була створена кафедра “Авіації”, якою керував також Г. Ф. Проскура, на базі якої в 1930 році був створений Харківський авіаційний інститут (нині Національний аерокосмічний університет “ХАІ”), а кафедра гідромеханіки перейменована в кафедру “Гідравлічні машини”. 2 липня 2021 року кафедра перейменована на честь Георгія Федоровича Проскури – видатного вченого, засновника наукової школи гідромашинобудування і авіації в Україні, члена Президії і голови Відділення технічних наук АН України, заслуженого діяча науки і техніки.

Кафедра "Гідравлічні машини імені Г. Ф. Проскури" готує майбутніх фахівців нової генерації в галузі цифрової гідравліки, гідравлічних машини та гідропневмоприводів, що використовуються практично в усіх галузях промисловості.

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють 2 доктора технічних наук, 10 кандидатів технічних наук; 2 співробітника мають звання професора, 8 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 8 з 8
  • Ескіз
    Документ
    Чисельні моделювання течії технологічної рідини у трубах колтюбінгової установки
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Шевченко, Наталія Григорівна; Калюжний, Владислав Володимирович; Андрієвська, Вікторія Сергіївна
    На сьогоднішній день одним із сучасних напрямків є використання технологій колтюбінгу та вдосконалення складу промивних агентів (рідин). Розглянуто особливості технологічних ділянок колтюбінгу – спіральне укладання труб, співвідношення основних розмірів гнучких труб, барабана та напрямного сектора. Наявність транспортера труб дає особливу відповідальність задля забезпечення переміщення колони гнучких труб у заданому діапазоні навантажень. Довжина труб сягає 5000 м. Радіальні розміри свердловини 150 мм. Перераховано етапи визначення основних параметрів насосної установки для подачі технологічної рідини до свердловини. При проведенні технологічних операцій насос повинен долати гідродинамічні втрати прямої та зворотної подачі рідини у свердловину. Необхідно враховувати можливість порушення співвісності циліндричних труб. Для проведення технологічних операцій інтенсифікації видобутку нафти використовують багатокомпонентні технологічні рідини. Наявність хімічних та полімерних добавок у рідині істотно впливає на властивості водних та вуглеводневих систем, утворює гелі різної щільності, в'язкості та реології. Відомо, що навіть незначний вміст полімерних добавок у розчині (6–30 г/л) призводить до неньютонівської поведінки промивної рідини в трубах свердловини. У роботі використовуються експериментальні дані, отримані компанією ТОВ "Регіон" України. Для чисельного моделювання гідродинамічних характеристик технологічної рідини використовуються лінійні та нелінійні моделі в'язкої рідини. У всіх випадках розглядався перебіг, що встановився. У зв'язку з тим, що у роботі використовується академічна версія пакету ANSYS CFD з обмеженими можливостями за кількістю осередків, розрахункові області вибрано за спрощеними схемами. Розглянуто схеми: спіраль – напрямна – пряма труба, лише спіральна частина намотування труби на барабан, кільцевий простір між циліндричними трубами з можливим ексцентриситетом. Результати численних досліджень застосовуються для прогнозування гідравлічних коефіцієнтів опору в трубах та характеристик насосного обладнання для подачі технологічної рідини у свердловину. Також результати можна використовувати для перевірочних розрахунків міцності колони гнучких труб для небезпечних перерізів.
  • Ескіз
    Документ
    Методичні вказівки до виконання практичних та лабораторних робіт "Робота з комп’ютерною програмою "PVT-Well-Pump"
    (Видавничий центр НТУ "ХПІ", 2023) Шевченко, Наталія Григорівна; Рєзва, Ксенія Сергіївна
    В останні роки значно ускладнилися умови видобутку нафтогазової продукції за допомогою експлуатації заглибного насосного обладнання – збільшилася глибина установки насоса до 3000 м, розширився діапазон в’язкості пластової рідини до 100 мПа·с, збільшилися об’ємні частки води, газу в продукції. Правильний вибір режиму роботи насоса до умов експлуатації свердловини гарантує надійність і ефективність роботи усієї установки. Тому рішення задачі прогнозування енергетичних характеристик заглибного відцентрового насоса з урахуванням сумісної роботи насоса та свердловини на основі методів математичного моделювання, є актуальною. Авторська програма «PVT-Well-Pump» призначена для підвищення ефективності проектних робіт з вибору оптимального режиму роботи насосного обладнання у свердловині з урахуванням реальних фізичних властивостей газорідинної суміші. Програма застосовується в учбовому процесі з курсів «Машини та обладнання для видобутку нафти та інших видів вуглеводної сировини», «Підвищення ефективності видобутку нафти та газу», а також в науково-дослідній роботі магістрів для моделювання сумісної роботи заглибного відцентрового насоса та свердловини при видобутку нафтогазової продукції у реальних умовах експлуатації. Методичні вказівки містять двадцять п’ять варіантів завдань та контрольних питань, які можуть бути використані як для проведення практичних занять, так і для самостійної роботи студентів.
  • Ескіз
    Документ
    Визначення енергетичних характеристик багатоступеневого відцентрового насосу при реальних умовах експлуатації нафтогазових свердловин
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Шевченко, Наталія Григорівна; Іващенко, Владислава Юріївна
  • Ескіз
    Документ
    Визначення втрат потужності на дискове тертя заглибних відцентрових насосів при видобутку водонафтової продукції
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Шевченко, Наталія Григорівна; Коваль, Олена Сергіївна; Люлін, Д. О.
    Метою роботі є дослідження впливу втрат потужності на дискове тертя в загальному балансі втрат енергії в заглибних відцентрових насосах, що перекачують водонафтову продукцію.
  • Ескіз
    Документ
    Підвищення ефективності роботи електровідцентрового насосу при видобутку нафти
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Шевченко, Наталія Григорівна; Шудрик, Олександр Леонідович; Бельмас, Д. В.
    Робота присвячена актуальній задачі – підвищенню ефективності роботи енергоспоживаючого насосного обладнання у нафтогазовій промисловості.
  • Ескіз
    Документ
    Вплив складу та реології нафтової продукції на роботу штангової насосної установки
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Шевченко, Наталія Григорівна; Фатєєва, Надія Миколаївна; Іващенко, Владислава Юріївна; Фатєєв, Олександр Миколайович
    Розглянуто експлуатацію нафтових свердловин із застосуванням штангових глибинних насосів. Досліджено, що склад і властивості середовищ, що перекачуються, істотно впливають на робочі параметри насосного обладнання, приводять до підвищення енергетичних витрат на підйом продукції, зриву подачі та іншим технічним проблемам. Продукція свердловин є суміш нафти, води та газу – газорідинна суміш. Зміна пластових умов (тиск та температура) уздовж свердловини змінює об'ємну частку вільного/розчиненого газу у нафті та фізичні властивості газорідинної суміші. Проведено огляд промислових реологічних показників водонафтової суміші при механізованому видобутку нафти. Аналіз показав, що зміна об'ємної концентрації води в нафті у діапазоні 50–80 % сприяє зміні реологічних показників та приводить до підвищенняв'язкості. Прийнято допущення, що нелінійну в'язку модель водонафтової емульсії типу Гершеля-Балклі можна описати узагальненою ньютонівської моделлю з введенням ефективної в'язкості. Для дослідження складу нафтової продукції на ефективність роботи насосної установки розглянуто наступні взаємопов'язані задачі. Перша – визначити залежності зміни гідродинамічних характеристик нафтогазового потоку у свердловині, динамічного рівня та місця установки насоса. На пластові умови на прийомі у насос провести розрахунки робочих характеристик штангового насоса. Для обраної конструкції колони штанг визначити напругу у точці підвісу штанг – перевірка забезпечення міцності. Розрахувати основні енергетичні показники всієї насосної установки. Розв'язання цих завдань виконано за допомогою програмного комплексу. У роботі удосконалена методика визначення ефективної в'язкості з урахуванням зміни реології промислових даних. У роботі проведено дослідження зміни об'ємної долі вільного газу та води у нафтогазової продукції на глибину установки насоса, динамічний рівень, тиск у насосі, режимні параметри насоса. Надано результати аналізу впливу зміни структурної в'язкості водонафтової продукції на параметри всієї насосної установки.
  • Ескіз
    Документ
    Прогнозування режиму роботи багатоступеневого відцентрового насосу при реальних умовах експлуатації нафтогазових свердловин
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Шевченко, Наталія Григорівна; Шудрик, Олександр Леонідович; Фатєєва, Надія Миколаївна; Фатєєв, Олександр Миколайович; Пономарьов, Владислав Анатолійович
    У реальних умовах експлуатації нафтогазових свердловин продукцією заглибних насосів є суміш пластової нафти, води та газу – газорідинна суміш. Проведено інформаційний огляд роботи заглибних відцентрових насосів на реальні умови експлуатації. Розглянута математична модель сумісної роботи пласта, свердловини та заглибного насоса. Для прогнозування режиму роботи насоса у нафтової свердловини були розглянуті наступні задачі: визначення фізичних характеристик газорідинної суміші при відповідних термодинамічних умовах; розподіл тиску по свердловині від вибою до гирла та й у насосно-компресорних трубах; визначення оптимальної глибини установки насоса з урахуванням вхідного об'ємного вмісту газу; перерахунок енергетичних характеристик електропровідного відцентрового насоса на пластові умови експлуатації; визначення режиму сумісної роботи свердловини та електропровідного відцентрового насоса за фактичними даними роботи свердловини. За допомогою інтегрованого середовища розробки вільного програмного забезпечення Lazarus створено автономні модулі з графічним інтерфейсом. Вихідні дані можна ввести вручну або імпортувати із зовнішнього текстового файлу. Результати розрахунків представлені у вигляді графіків, а також є можливість вивести в файли для подальшого їх аналізу. Проведено адаптацію програмних модулів для умов експлуатації свердловин НГВУ «Охтирканафтогаз». Проведена оцінка впливу глибини установки насоса на режим роботи насоса та його енергетичні параметри. У роботі удосконалена математична модель визначення енергетичних характеристик багатоступеневого відцентрового насосу. Рух нафтогазової суміші у багатоступеневому насосі характеризується безперервним зростанням тиску й температури, зміною дійсної об'ємної фази газу, в'язкості, щільності уздовж насоса. У зв'язку із цим, для розрахунків енергетичних характеристик багатоступеневого насоса необхідно дотримуватися перерахування гідродинамічних параметрів потоку кожної ступені вздовж насосу. Прийнято, що процес розчинення газу аналогічний процесу розгазування. Проведено дослідження трьох варіантів компоновки ступенів заглибного відцентрового насоса, що дозволило отримати підвищення енергетичних показників насоса.
  • Ескіз
    Документ
    Динамічний аналіз позиційних пневмоагрегатів
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Фатєєв, Олександр Миколайович; Фатєєва, Надія Миколаївна; Шевченко, Наталія Григорівна
    Розглянуто аналіз динаміки позиційного пневмоагрегата, реалізованого на дискретній апаратурі. Для цього розроблено математичну модель роботи системи позиційних пневмоагрегатів з програмованими електронними блоками управління, що дозволяє враховувати особливості системи пневмоагрегатів, й включає математичні моделі виконавчого механізму, модель ліній управління й модель системи управління з врахуванням реального масштабу часу. В результаті досліджень розроблено методику оцінки функціональних можливостей пневмоагрегата, з точки зору його динаміки, що дозволяє оцінити в якій мірі даний пневмоагрегат може забезпечити виконання потрібних за технологічним процесом характеристик, таких як: швидкодія, вантажопідйомність, точність відпрацювання задаючого сигналу та ін. Ця задача була вирішена на базі зворотної задачі динамічного розрахунку пневмоагрегата, яка полягала в знаходженні конструктивних параметрів за заданими технічними характеристиками, для цього була визначена функція позиціювання, що описується для семи та одинадцяти інтервалів руху і яка відповідає таким вимогам позиційного пневмоагрегата: нерозривність значень основних параметрів руху – переміщення, швидкості, прискорення; стійкість розгону і гальмування, що полягає в рівності нулю значень швидкості і прискорення в початковий і кінцевий моменти руху; мінімальність перевантажень, що складається в забезпеченні мінімальності значень прискорення протягом усього періоду руху пневмоагрегата; максимальна продуктивність, що полягає в забезпеченні мінімальності часу руху. На підставі функції позиціювання отримано закони руху вихідної ланки позиційного пневмоагрегата, що дозволяє забезпечити задані технічні характеристики, та забезпечує плавний розгін вихідної ланки пневмоагрегата, потім його рух із постійною швидкістю та плавне гальмування із зупинкою в точці позиціювання. Для використання отриманих результатів при проектуванні розроблена програма в середовищі MATLAB.