Кафедра "Гідравлічні машини ім. Г. Ф. Проскури"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2767

Офіційний сайт кафедри http://web.kpi.kharkov.ua/gdm

Від 2021 року кафедра має назву "Гідравлічні машини імені Г. Ф. Проскури", попередня назва – "Гідравлічні машини" (від 1930 року).

Кафедра заснована на основі гідравлічної лабораторії у 1914 році академіком Г. Ф. Проскурою, первісна назва – кафедра гідромеханіки. У 1923 році була створена кафедра “Авіації”, якою керував також Г. Ф. Проскура, на базі якої в 1930 році був створений Харківський авіаційний інститут (нині Національний аерокосмічний університет “ХАІ”), а кафедра гідромеханіки перейменована в кафедру “Гідравлічні машини”. 2 липня 2021 року кафедра перейменована на честь Георгія Федоровича Проскури – видатного вченого, засновника наукової школи гідромашинобудування і авіації в Україні, члена Президії і голови Відділення технічних наук АН України, заслуженого діяча науки і техніки.

Кафедра "Гідравлічні машини імені Г. Ф. Проскури" готує майбутніх фахівців нової генерації в галузі цифрової гідравліки, гідравлічних машини та гідропневмоприводів, що використовуються практично в усіх галузях промисловості.

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють 2 доктора технічних наук, 10 кандидатів технічних наук; 2 співробітника мають звання професора, 8 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 6 з 6
  • Ескіз
    Документ
    Synthesis of minimal schemes of systems control of hydraulic and pneumatic drives
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Cherkashenko, M. V.
    The existing schemes of command apparatus are presented. Their analysis is carried out and the shortcomings are indicated. The scheme of a fundamentally new command apparatus is given, which can significantly reduce the number of its elements. The synthesis of the pneumatic control system of the foundry machine was carried out on the basis of the design approach proposed by M. Cherkashenko, which as a result led to a reduction in the devices by 3.5 times. A graph of operations of the pneumatic control system of the molding machine is constructed. A matrix of correspondences is obtained, which determines the correspondence between the signals that cause transitions and the complete input sets acting in the transitions. Analysis of the matrix of correspondences made it possible to identify and eliminate contradictory transitions. On the basis of the elongations, a system of equations describing the scheme of the control system is synthesized. Further, minimization is performed due to factorization and decomposition of equations, and obtaining equations in their final form. A diagram is presented pneumatic control system of the molding machine, consisting of a command apparatus containing three cells, five cylinders, two vibrators, six limit switches, a time relay and other devices. The circuit simultaneously uses the functional and logical capabilities of limit switches, the possibility of implementing the functions of three variables by distributors. Thus, the use of the proposed command apparatus, in contrast to the existing schemes of command apparatus, can significantly reduce the number of distributors in the synthesis of the command apparatus itself and significantly reduce the number of elements when using the chosen approach to the design of circuits of pneumohydraulic control systems.
  • Ескіз
    Документ
    Synthesis of minimum control systems of hydraulic and pneumatic drives
    (National Technical University "Kharkiv Polytechnic Institute", 2023) Cherkashenko, M. V.
    The monograph presents the scientific direction developed by the author: "Synthesis of minimum of control systems of hydraulic and pneumatic drives", associated with topical problems of the modern theory of synthesis of drivescontrol systems, including theoretical foundations and methods of structural analysis and synthesis of drivescontrol systems. Here we will show the existing schemes of command apparatuses, analyze them and point out the shortcomings. Sсheme of the developed command apparatus which allows you to minimize the number of elements, reduce cost, increase reliability, and simplify the maintenance of the control system. Modern text material is of interest to professionals engaged inthe development of drive systems. Is intended for students in the study of relevant courses, as well as for raduate students of engineering specialties.
  • Ескіз
    Документ
    On the theory of synthesis of minimal schemes of systems control of hydraulic and pneumatic drives
    (Національний технічний університет "Харківський політехнічний інститут", 2022) Cherkashenko, M. V.
    Showed the strict compliance of the scientific direction "Synthesis of minimum control schemes of hydraulic and pneumatic drive systems" developed by the author with the point of view of general algebra, algebra of logic, graph theory and automata theory. The synthesis of the minimum graph of operations, which is a mathematical model of the control system, has been proved. The legitimacy of the methods of undivided decomposition of equations describing the scheme of the control system has been proved. The control system is considered as a cyclic Moore finite automaton. By a cyclic automaton (CA) we will understand the mathematical model of a device designed to control cyclic processes, which are a set of technological operations performed in a certain sequence. In this regard, the automaton at each clock necessarily passes into some new state, and for a finite number of cycles the target reaches any state, and its graph contains a contour, covering all states. In general, the CA may contain several circuits, so that each circuit is interpreted either as one of the possible sequences of technological operations due to the corresponding mode of operation, or as an independent and simultaneous execution of a number of sets of technological operations. A sequential decomposition of the CA is presented in order to represent it by the sequential operation of automata with one internal state. Such a consideration of the function of transitions will naturally lead to a decrease in the number of elements in the implementation of the CA. The study will be subjected to the CA, the graph of which consists of a single circuit, since the results obtained are easily generalized to multi-circuit CA. Obtaining a breakdown of the states of a cyclic automaton in the manner indicated above is performed directly according to any automaton description without any additional calculations, tables and other constructions.
  • Ескіз
    Документ
    Synthesis of minimum control systems of hydraulic and pneumatic drives
    (National Technical University "Kharkiv Polytechnic Institute", 2022) Cherkashenko, M. V.
    The monograph presents the scientific direction developed by the author: "Synthesis of minimum of control systems of hydraulic and pneumatic drives", associated with topical problems of the modern theory of synthesis of drive s control systems, including theoretical foundations and methods of structural analysis and synthesis of d rive s control systems. Modern text material is of interest to professionals engaged in t he development of drive systems. Is intended for students in the study of relevant courses, as well as for raduate students of engineering speci alties.
  • Ескіз
    Документ
    Synthesis and analysis of control schemes of hydropneumatic drives
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Lynnyk, Aleksandr; Cherkashenko, M. V.; Fatieieva, Nadezhda; Fatyeyev, Aleksandr; Ponomarov, Vladyslav
    The method of analysis of circuits of hydropneumatic actuators is offered, which allows to detect and eliminate existing design errors, mainly related to the inconsistency of inputs operating between technological operations and "power struggle" on actuators, as well as the method of synthesis to obtain the scheme, which contains close to the minimum number of logical elements. A formalized method of analysis of control circuits of hydropneumatic actuators is proposed, which allows to detect and eliminate errors possible during synthesis. Equations of output functions and internal states of the system are written directly according to the scheme of the hydropneumatic drive by the method of standard positional structure and from the matrix of correspondences by the method of minimization. Error detection is carried out by determining the correctness of the graph of operations, analysis of the input sequence, the correctness of the matrix of correspondences and the corresponding system of equations. The efficiency of using the matrix of correspondences of M. Cherkashenko for the analysis of schemes is shown, the dimension of which does not depend on the number of inputs and outputs, but only on the number of transitions between technological operations. The proposed method is an effective means of detecting errors, inaccuracies, performance checks, rational construction of circuits, and can be widely used by designers of control systems for hydropneumatic actuators, as well as university students in the study of methods of construction of circuits.
  • Ескіз
    Документ
    Synthesis of discrete drives control systems
    (НТУ "ХПІ", 2018) Cherkashenko, M. V.
    The classical methods of creation of schemes using tables of transitions, states, Carnot's cards and other means which dimension depends on number of inputs and outputs of the scheme are not acceptable for systems big dimension (with big number of inputs, outputs and internal states). Control systems of hydropneumatic units are the determined systems of big dimension. Now at synthesis of systems of hydropneumatic units the standard position structure having the known advantages, but which is characterized by a large number of elements of the projected scheme is used. Partial minimization of standard position structure was offered inthe works Yuditsky S., Goedecke W., Belforte G., Reydzo J., etc. The method of full minimization of the standard position structure offered by the author allowed to receive the minimum structure of schemes due to receiving of minimum the operation graph and the offered mathematical model – the matrix conformity (MC) which dimension does not depend on quantity of entrances and exits of system.