Кафедра "Гідравлічні машини ім. Г. Ф. Проскури"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2767

Офіційний сайт кафедри http://web.kpi.kharkov.ua/gdm

Від 2021 року кафедра має назву "Гідравлічні машини імені Г. Ф. Проскури", попередня назва – "Гідравлічні машини" (від 1930 року).

Кафедра заснована на основі гідравлічної лабораторії у 1914 році академіком Г. Ф. Проскурою, первісна назва – кафедра гідромеханіки. У 1923 році була створена кафедра “Авіації”, якою керував також Г. Ф. Проскура, на базі якої в 1930 році був створений Харківський авіаційний інститут (нині Національний аерокосмічний університет “ХАІ”), а кафедра гідромеханіки перейменована в кафедру “Гідравлічні машини”. 2 липня 2021 року кафедра перейменована на честь Георгія Федоровича Проскури – видатного вченого, засновника наукової школи гідромашинобудування і авіації в Україні, члена Президії і голови Відділення технічних наук АН України, заслуженого діяча науки і техніки.

Кафедра "Гідравлічні машини імені Г. Ф. Проскури" готує майбутніх фахівців нової генерації в галузі цифрової гідравліки, гідравлічних машини та гідропневмоприводів, що використовуються практично в усіх галузях промисловості.

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють 2 доктора технічних наук, 10 кандидатів технічних наук; 2 співробітника мають звання професора, 8 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Публікація
    Improvement of the working process of hydroturbines and its regulation systems
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Migushchenko, Ruslan; Potetenko, Oleg; Gasiyk, Alexander; Krupa, Evgeniy
    The paper provides the detail analysis of the causes of various types of the vortex motion of the turbulent flow in the inlet parts of the turbine and in the inter-blade channels of the runner. The causes of the appearance of large-scale vortex structures in the meridional sections of the spiral case of radial-axial hydraulic turbines with the heads of 400–500 m are shown. As a result of this phenomenon, in the section of the spiral case the flow is directed in the region of the walls to the runner. In the central part it is directed from the runner, i. e. the spiral case executing its functions of supplying the flow functions only with part of its section – the near-wall zone – where the vortex near-wall flow with increased velocity and energy losses enters to the channels of the runner. These conclusions in the work are argued by extensive experimental data. Energy losses in the spiral case reaches 3–5 % and a complex vortex structure, which enters to the runner, leads to a decrease of the energy characteristics. The flow inlet to the runner using nozzle devices located on the ring in front of the runner is considered in the paper. These nozzle devices increase the velocity by five or more times and provide low losses in the inlet (about 0,5 %) and almost uniform flow in front of the runner with a moment of quantity of motion, which provides an optimal operation of the hydraulic turbine. The improvement of the working flow and control systems is presented in this paper using new design solutions, for which more than ten patents of Ukraine for the invention were obtained. In particular, as a result of this study of the working processes of Francis-Deriaz hydraulic turbines, which allowed the use of blade turbines for the heads of more than 400–500 m up to 800–1000 m with high energy and cavitation characteristics with wide operating areas in terms of rates (powers) and heads, with an increase of 2–7 % average operating efficiency. The working process of a new type of diagonal-axial hydraulic turbine with a very wide operation range in terms of flow and pressure with a significantly increased average operating efficiency, increased operation reliability, which is illustrated by the predictive universal characteristic, is also considered. This characteristic allows the use of rotary-blade hydraulic turbines for heads up to 230–250 m. Therefore, the carried out improvement of the working process of hydraulic turbines and their control systems convincingly proves the advantage of the new scientific and technical solutions in comparison with previously used ones.