Кафедра "Гідравлічні машини ім. Г. Ф. Проскури"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2767

Офіційний сайт кафедри http://web.kpi.kharkov.ua/gdm

Від 2021 року кафедра має назву "Гідравлічні машини імені Г. Ф. Проскури", попередня назва – "Гідравлічні машини" (від 1930 року).

Кафедра заснована на основі гідравлічної лабораторії у 1914 році академіком Г. Ф. Проскурою, первісна назва – кафедра гідромеханіки. У 1923 році була створена кафедра “Авіації”, якою керував також Г. Ф. Проскура, на базі якої в 1930 році був створений Харківський авіаційний інститут (нині Національний аерокосмічний університет “ХАІ”), а кафедра гідромеханіки перейменована в кафедру “Гідравлічні машини”. 2 липня 2021 року кафедра перейменована на честь Георгія Федоровича Проскури – видатного вченого, засновника наукової школи гідромашинобудування і авіації в Україні, члена Президії і голови Відділення технічних наук АН України, заслуженого діяча науки і техніки.

Кафедра "Гідравлічні машини імені Г. Ф. Проскури" готує майбутніх фахівців нової генерації в галузі цифрової гідравліки, гідравлічних машини та гідропневмоприводів, що використовуються практично в усіх галузях промисловості.

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють 2 доктора технічних наук, 10 кандидатів технічних наук; 2 співробітника мають звання професора, 8 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Зависимость коэффициента теоретического напора высоконапорной радиально-осевой турбины от режимных параметров
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Мараховский, Михаил Борисович; Гасюк, Александр Иванович; Панамарева, Ольга Борисовна; Ярошенко, Алексей Андреевич
    Взаимодействие потока жидкости с рабочим колесом характеризуется следующими интегральными параметрами: гидравлическим моментом на рабочем колесе, гидравлической мощностью и теоретическим напором. В работе с помощью методов теории размерностей осуществлен переход от размерных зависимостей к безразмерным соотношениям для соответствующих коэффициентов. В соответствии с опытными данными безразмерная циркуляция перед рабочим колесом для данной линии тока зависит только от угла потока за решеткой направляющего аппарата, т. е. от открытия направляющего аппарата. Из полученных зависимостей вытекает выражение для коэффициента теоретического напора от режимных параметров. В безразмерной форме полученные зависимости коэффициента теоретического напора от обобщенного безразмерного кинематического параметра KQ наиболее удобны для анализа энергетических характеристик рассматриваемой проточной части радиально-осевой гидротурбины. Кроме того, получено уравнение моментной характеристики гидротурбины также в безразмерной форме. Рассчитанные теоретические зависимости сравнены с экспериментальными данными для различных типов рабочих колес. Полученные результаты позволяют судить о возможности использования разработанных моделей для исследования энергетических качеств высоконапорных радиально-осевых турбин. Рассмотренные кинематические модели могут быть положены в основу упрощенных моделей рабочего процесса, используемых на начальных стадиях проектирования проточной части. Полученные зависимости построены исходя из решения осесимметричной задачи течения жидкости в проточной части. Из предварительного решения этой задачи для получения безразмерных энергетических характеристик используются коэффициенты А и В, учитывающие изменение меридианной скорости течения жидкости в характерных сечениях проточной части и учитывающих изменение картины течения в зависимости от режимных параметров. Найдена зависимость коэффициентов циркуляции и коэффициента теоретического напора пространственной решетки рабочего колеса от геометрических и режимных параметров. Эта зависимость может быть использована для поверочных расчетов (распределения меридиональных и окружных составляющих скорости, циркуляции) при проведении многовариантных расчетов в САПР.