Кафедра "Гідравлічні машини ім. Г. Ф. Проскури"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2767

Офіційний сайт кафедри http://web.kpi.kharkov.ua/gdm

Від 2021 року кафедра має назву "Гідравлічні машини імені Г. Ф. Проскури", попередня назва – "Гідравлічні машини" (від 1930 року).

Кафедра заснована на основі гідравлічної лабораторії у 1914 році академіком Г. Ф. Проскурою, первісна назва – кафедра гідромеханіки. У 1923 році була створена кафедра “Авіації”, якою керував також Г. Ф. Проскура, на базі якої в 1930 році був створений Харківський авіаційний інститут (нині Національний аерокосмічний університет “ХАІ”), а кафедра гідромеханіки перейменована в кафедру “Гідравлічні машини”. 2 липня 2021 року кафедра перейменована на честь Георгія Федоровича Проскури – видатного вченого, засновника наукової школи гідромашинобудування і авіації в Україні, члена Президії і голови Відділення технічних наук АН України, заслуженого діяча науки і техніки.

Кафедра "Гідравлічні машини імені Г. Ф. Проскури" готує майбутніх фахівців нової генерації в галузі цифрової гідравліки, гідравлічних машини та гідропневмоприводів, що використовуються практично в усіх галузях промисловості.

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють 2 доктора технічних наук, 10 кандидатів технічних наук; 2 співробітника мають звання професора, 8 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Модернізація робочого колеса високонапірної гідротурбіни на задні параметри
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Миронов, Костянтин Анатолійович; Дмитрієнко, Ольга Вячеславівна; Ярошенко, Микола Андрійович
    Розглянута задача модернізації робочого колеса високонапірної радіально-осьової гідротурбіни на задані параметри. Модернізоване робоче колесо повинно відповідати сучасним вимогам по рівню ККД та кавітації. За допомогою пакета прикладних програм розроблено лопатеву систему робочого колеса на прийняті параметри оптимального режиму з високими енергокавітаційними показниками. Представлено результати розрахункового аналізу параметрів потоку в проточній частині високонапірної гідротурбіни РО310 підвищеної швидкохідності. Постійно зростаючі вимоги до підвищення енергетичних якостей гідротурбін зумовлюють необхідність удосконалення методів, що дають змогу прогнозувати й оптимізувати енергетичні характеристики проточної частини. Підвищення енергокавітаційних показників гідротурбін висуває завдання подальшого розвитку методу математичного моделювання робочого процесу. Застосування чисельного експерименту на основі математичної моделі робочого процесу є ефективним засобом пошуку раціональних варіантів як ново проектованих, так і модифікованих елементів проточної частини гідротурбін. Необхідною складовою частиною проектування проточної частини є вибір низки геометричних параметрів робочого колеса (меридіональні обриси порожнини, вхідних і вихідних кромок лопаті та ін.), правильність якого істотно впливає на енергетичні показники. Під час вибору геометричних параметрів робочого колеса орієнтуються, як правило, на дослідні дані, отримані для гідротурбін залежно від швидкохідності. Такий підхід не забезпечує належного узгодження геометричних параметрів робочого колеса, наслідком чого часто є як розбіжність розрахункового режиму з оптимальним, так і недостатньо високий рівень енергетичних показників.
  • Ескіз
    Документ
    CFD підхід для аналізу характеристик потоку високонапірної радіально-осьової гідротурбіни
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Миронов, Костянтин Анатолійович; Олексенко, Юлія Юріївна; Миронов, Вадим Костянтинович
    З ростом обчислювальної механіки віртуальні гідравлічні машини стають все більш реалістичними, дають можливість визначити незначні деталі потоку, що в свою чергу неможливо отримати при тестуванні моделей. В данній роботі проведено 3D турбулентний аналіз реального потоку в радіально-осьовій гідравлічній турбіні при трьох відкриттях направляючого апарату та різній швидкості обертання за допомогою програмного забезпечення для обчислювальної динаміки рідин (CFD) Ansys CFX. Обчислюються для отримання характеристик потоку середні значення параметрів потоку, такі як швидкість і кути потоку на вході і на виході з робочого колеса, направляючого апарату і статору. Для поліпшення енергетичних показників на попередньому етапі проектування гідротурбіни проводиться чисельне моделювання потоку. Даний підхід CFD знижує витрати і час в порівнянні з експериментальними підходом і дає можливість удосконалити і аналізувати показники турбіни і її конструкцію до моменту виготовлення моделі. Розрахунковий комплекс програм надає можливість побачити картину розподілу тиску, поле векторів швидкості і руху частинок рідини для обґрунтування та аналізу результатів. Наведені результати розрахункового дослідження підтверджують, що гідравлічний коефіцієнт корисної дії гідравлічної турбіни в значній мірі залежить від втрат в напрямному апараті і робочому колесі і означає, що саме цим елементам варто приділяти найбільші увагу, їх конструкції та узгодженню потоку в них. Отримані розрахункові дані відповідають відомим раніше експериментальним рекомендаціям для високонапірної радіально-осьової гідротурбіни.
  • Ескіз
    Документ
    Розробка клапана різниці тиску
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Андренко, Павло Миколайович; Дмитрієнко, Ольга Вячеславівна; Клітной, Віктор Володимирович; Миронов, Вадим Костянтинович
    Проаналізовані схемні та конструктивні рішення існуючих клапанів різниці тиску та дискретних мембранних елементів. Встановлено, що гідроапарати, зокрема клапани різниці тиск, які мають у своєму складі запірно-регулюючий елемент, виконаний у вигляді золотника, мають значну силу тертя, що знижує їх чутливість до перепаду тиску, та витоки, які знижують їх ККД. За аналізом гідроапаратів, збудованих за принципом вільних мембран, встановлено, що вони мають просту конструкцію, високу надійність, малий час спрацювання та собівартість. Проаналізовані існуючі конструктивні рішення таких мембранних елементів. Доведено, що відомі рівняння власних коливань мембрани, які розділяють ідеальні рідини різної щільності в прямокутному каналі з жорсткими підставами не можуть бути використані при побудові елементів, збудованих за принципом вільних мембран. Встановлені конструктивні параметри, які впливають на вихідні характеристики елементів, збудованих за принципом вільних мембран. Наведено схемну реалізацію клапана різниці тиску, збудованого за принципом вільних мембран, конструкція якого захищена патентом України на корисну модель. Особливістю розробленого клапана є те, що він дозволяє, залежно від різниці тисків на його вході та виході, які сумуються на запірно-регулюючому елементі, утвореному рухомими дисками, розміщеними в камерах, управляти відкриттям/закриттям вхідних та вихідних каналів камер, забезпечуючи протікання рідини від входу клапана на його вихід та навпаки. Розроблений клапан різниці тиску дозволяє підтримувати задану різницю тиску незалежно від напрямку руху робочої рідини. Проаналізовано конструктивні та робочі параметри, які впливають на робочий процес розробленого клапана. Доведено, що регулювання різниці тиску між входом та виходом розробленого клапана здійснюється відповідним добором площ мембран,розміщених у його проточних камерах. Розроблена методика вибору конструктивних та робочих параметрів розробленого клапана різниці тиску, яка базується на методах механіки твердого тіла та гідромеханіки. Встановлено поріг чутливості розробленого клапана різниці тиску.