Кафедра "Гідравлічні машини ім. Г. Ф. Проскури"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2767
Офіційний сайт кафедри http://web.kpi.kharkov.ua/gdm
Від 2021 року кафедра має назву "Гідравлічні машини імені Г. Ф. Проскури", попередня назва – "Гідравлічні машини" (від 1930 року).
Кафедра заснована на основі гідравлічної лабораторії у 1914 році академіком Г. Ф. Проскурою, первісна назва – кафедра гідромеханіки. У 1923 році була створена кафедра “Авіації”, якою керував також Г. Ф. Проскура, на базі якої в 1930 році був створений Харківський авіаційний інститут (нині Національний аерокосмічний університет “ХАІ”), а кафедра гідромеханіки перейменована в кафедру “Гідравлічні машини”. 2 липня 2021 року кафедра перейменована на честь Георгія Федоровича Проскури – видатного вченого, засновника наукової школи гідромашинобудування і авіації в Україні, члена Президії і голови Відділення технічних наук АН України, заслуженого діяча науки і техніки.
Кафедра "Гідравлічні машини імені Г. Ф. Проскури" готує майбутніх фахівців нової генерації в галузі цифрової гідравліки, гідравлічних машини та гідропневмоприводів, що використовуються практично в усіх галузях промисловості.
Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".
У складі науково-педагогічного колективу кафедри працюють 2 доктора технічних наук, 10 кандидатів технічних наук; 2 співробітника мають звання професора, 8 – доцента.
Переглянути
Результати пошуку
Публікація Hydro turbine speed control system(Національний технічний університет "Харківський політехнічний інститут", 2023) Hasiuk, O. I.The article presents a mathematical model of an hydro turbine speed control system. In the world and domestic practice of creating hydraulic turbine equipment, there is a clear tendency to create computer-based rotor speed control systems for hydraulic turbines. Computer systems provide an opportunity to implement the introduction of effective algorithms using software that improve the static and dynamic characteristics of the system. This in turn increases the importance of mathematical modeling both at the design stage and during commissioning. The analysis of the performed works devoted to the mathematical description of the elements of the hydraulic drive of the regulator showed that they are reduced to linearized equations without taking into account a number of important factors that will increase the accuracy of the mathematical model. Improvement of static and dynamic characteristics and the system as a whole can be achieved by solving the scientific problem of studying its dynamics based on the development of a more complete mathematical model. To reduce friction and hysteresis, to prevent obliteration, the electrohydraulic converter plunger in the lower part is equipped with a segner wheel. Improving the dynamic characteristics of hydraulic turbine speed controllers requires the development of nonlinear mathematical models with subsequent analysis of transients in the hydraulic drive of the speed controller. Evaluation of the quality of transient processes and subsequent adjustment of parameters allows to achieve a reduction in the duration of transients, increase the speed and accuracy of positioning at small movements of the servo motor. A number of unaccounted factors during the preparation of the mathematical model of the electro-hydraulic converter makes it possible to increase its adequacy to the real object of study and increase the speed of the control system of the rotor speed of the hydraulic turbine.Документ Зависимость коэффициента теоретического напора высоконапорной радиально-осевой турбины от режимных параметров(Національний технічний університет "Харківський політехнічний інститут", 2020) Мараховский, Михаил Борисович; Гасюк, Александр Иванович; Панамарева, Ольга Борисовна; Ярошенко, Алексей АндреевичВзаимодействие потока жидкости с рабочим колесом характеризуется следующими интегральными параметрами: гидравлическим моментом на рабочем колесе, гидравлической мощностью и теоретическим напором. В работе с помощью методов теории размерностей осуществлен переход от размерных зависимостей к безразмерным соотношениям для соответствующих коэффициентов. В соответствии с опытными данными безразмерная циркуляция перед рабочим колесом для данной линии тока зависит только от угла потока за решеткой направляющего аппарата, т. е. от открытия направляющего аппарата. Из полученных зависимостей вытекает выражение для коэффициента теоретического напора от режимных параметров. В безразмерной форме полученные зависимости коэффициента теоретического напора от обобщенного безразмерного кинематического параметра KQ наиболее удобны для анализа энергетических характеристик рассматриваемой проточной части радиально-осевой гидротурбины. Кроме того, получено уравнение моментной характеристики гидротурбины также в безразмерной форме. Рассчитанные теоретические зависимости сравнены с экспериментальными данными для различных типов рабочих колес. Полученные результаты позволяют судить о возможности использования разработанных моделей для исследования энергетических качеств высоконапорных радиально-осевых турбин. Рассмотренные кинематические модели могут быть положены в основу упрощенных моделей рабочего процесса, используемых на начальных стадиях проектирования проточной части. Полученные зависимости построены исходя из решения осесимметричной задачи течения жидкости в проточной части. Из предварительного решения этой задачи для получения безразмерных энергетических характеристик используются коэффициенты А и В, учитывающие изменение меридианной скорости течения жидкости в характерных сечениях проточной части и учитывающих изменение картины течения в зависимости от режимных параметров. Найдена зависимость коэффициентов циркуляции и коэффициента теоретического напора пространственной решетки рабочего колеса от геометрических и режимных параметров. Эта зависимость может быть использована для поверочных расчетов (распределения меридиональных и окружных составляющих скорости, циркуляции) при проведении многовариантных расчетов в САПР.Публікація Improvement of the working process of hydroturbines and its regulation systems(Національний технічний університет "Харківський політехнічний інститут", 2019) Migushchenko, Ruslan; Potetenko, Oleg; Gasiyk, Alexander; Krupa, EvgeniyThe paper provides the detail analysis of the causes of various types of the vortex motion of the turbulent flow in the inlet parts of the turbine and in the inter-blade channels of the runner. The causes of the appearance of large-scale vortex structures in the meridional sections of the spiral case of radial-axial hydraulic turbines with the heads of 400–500 m are shown. As a result of this phenomenon, in the section of the spiral case the flow is directed in the region of the walls to the runner. In the central part it is directed from the runner, i. e. the spiral case executing its functions of supplying the flow functions only with part of its section – the near-wall zone – where the vortex near-wall flow with increased velocity and energy losses enters to the channels of the runner. These conclusions in the work are argued by extensive experimental data. Energy losses in the spiral case reaches 3–5 % and a complex vortex structure, which enters to the runner, leads to a decrease of the energy characteristics. The flow inlet to the runner using nozzle devices located on the ring in front of the runner is considered in the paper. These nozzle devices increase the velocity by five or more times and provide low losses in the inlet (about 0,5 %) and almost uniform flow in front of the runner with a moment of quantity of motion, which provides an optimal operation of the hydraulic turbine. The improvement of the working flow and control systems is presented in this paper using new design solutions, for which more than ten patents of Ukraine for the invention were obtained. In particular, as a result of this study of the working processes of Francis-Deriaz hydraulic turbines, which allowed the use of blade turbines for the heads of more than 400–500 m up to 800–1000 m with high energy and cavitation characteristics with wide operating areas in terms of rates (powers) and heads, with an increase of 2–7 % average operating efficiency. The working process of a new type of diagonal-axial hydraulic turbine with a very wide operation range in terms of flow and pressure with a significantly increased average operating efficiency, increased operation reliability, which is illustrated by the predictive universal characteristic, is also considered. This characteristic allows the use of rotary-blade hydraulic turbines for heads up to 230–250 m. Therefore, the carried out improvement of the working process of hydraulic turbines and their control systems convincingly proves the advantage of the new scientific and technical solutions in comparison with previously used ones.Документ Системы управления гидротурбин(Национальный технический университет "Харьковский политехнический институт", 2019) Мигущенко, Руслан Павлович; Черкашенко, Михаил Владимирович; Потетенко, Олег Васильевич; Гасюк, Александр Иванович; Дорошенко, Александр Владиславович; Cherkashenko, AlexanderВ статье приведен аналитический обзор и анализ существующих в мировой и отечественной практике систем управления гидротурбин. Рассмотрены конструктивные особенности построения схем с дискретным и дискретно-аналоговым способом управления. Приведены схемы управления частотой вращения гидротурбины ведущих фирм-производителей гидротурбинного оборудования: ALSTOM POWER HYDRO (Франция, Гренобль), Wood word (США),Va Tech (Австрия), Voith Siemens (Германия). Выполнен анализ работы схем и элементная база применяемой гидроаппаратуры с учетом специфики функционирования системы регулирования. Рассмотрено применение для построения систем управления двух способов синтеза управляющих устройств с применением дискретного и дискретно-аналогового способа для синтеза позиционного гидропневмопривода. Показано, что разработка методов проектирования с использованием обоих подходов, математических моделей и алгоритмов управления, направленных на повышение точности позиционирования и надежности систем с возможным упрощением схемных решений, является важнейшей задачей, направленной на получение огромного экономического эффекта при решении данной важнейшей проблемы. Полученные результаты доказывают, что применение позиционного гидропневмопривода для построения системы управления скоростью гидротурбины с дискретным и дискретно-аналоговым управлением,позволяет синтезировать гидропневмопривод с высокой точностью позиционирования, без применения дорогостоящих гидрораспределителей с пропорциональным управлением.Документ Математическая модель гидродинамических характеристик элементов проточной части радиально-осевой гидротурбины. Часть 2(НТУ "ХПИ", 2018) Мараховский, Михаил Борисович; Гасюк, Александр ИвановичПредложена математическая модель сопротивления в безразмерной полиноминальной форме, описывающая поведение коэффициентов отдельных видов потерь в зависимости от режимных параметров гидротурбины и геометрических параметров проточной части. Принята схема разделения потерь энергии по элементам проточной части: потери в подводе (спиральная камера, статор и направляющий аппарат), рабочем колесе, и отсасывающей трубе. Кроме того, потери разделяются по категориям в зависимости от их физической природы. В лопастных системах выделяют профильные потери (это потери энергии, возникающие при безударном обтекании профиля), "ударные" потери (потери на отрыв потока при несовпадении действительного угла натекания потока на профиль и угла безударного обтекания). Выделяют также кромочные потери (потери возникающие за счет обтекания выходной кромки конечной толщины) и концевые потери, возникающие за счет перетекания жидкости на концах профиля из зоны высокого давления в зону низкого давления. В отсасывающей трубе рассчитываются потери трения и потери энергии, от возникающего за рабочим колесом осевого вихря. Каждый вид потерь зависит от набора геометрических и режимных параметров. Такая форма представления модели удобна, как для проведения численного исследования влияния геометрических параметров проточной части, так и проведения оптимизационных расчетов. Модель позволяет исследовать влияние отдельных видов потерь на гидродинамические характеристики проточной части радиально-осевой гидротурбины. Приведенные данные позволяют использовать разработанную модель сопротивления для построения теоретической универсальной характеристики турбины. Полиноминальный вид модели позволяет провести оптимизационные расчеты проточной части аналитическим методом. Полученные данные сопоставлялись с результатами экспериментальных исследований для высоконапорной радиально-осевой гидротурбины. Результаты позволяют судить о хорошем совпадении расчетных и экспериментальных данных.