Кафедра "Гідравлічні машини ім. Г. Ф. Проскури"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2767

Офіційний сайт кафедри http://web.kpi.kharkov.ua/gdm

Від 2021 року кафедра має назву "Гідравлічні машини імені Г. Ф. Проскури", попередня назва – "Гідравлічні машини" (від 1930 року).

Кафедра заснована на основі гідравлічної лабораторії у 1914 році академіком Г. Ф. Проскурою, первісна назва – кафедра гідромеханіки. У 1923 році була створена кафедра “Авіації”, якою керував також Г. Ф. Проскура, на базі якої в 1930 році був створений Харківський авіаційний інститут (нині Національний аерокосмічний університет “ХАІ”), а кафедра гідромеханіки перейменована в кафедру “Гідравлічні машини”. 2 липня 2021 року кафедра перейменована на честь Георгія Федоровича Проскури – видатного вченого, засновника наукової школи гідромашинобудування і авіації в Україні, члена Президії і голови Відділення технічних наук АН України, заслуженого діяча науки і техніки.

Кафедра "Гідравлічні машини імені Г. Ф. Проскури" готує майбутніх фахівців нової генерації в галузі цифрової гідравліки, гідравлічних машини та гідропневмоприводів, що використовуються практично в усіх галузях промисловості.

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють 2 доктора технічних наук, 10 кандидатів технічних наук; 2 співробітника мають звання професора, 8 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 7 з 7
  • Ескіз
    Документ
    Визначення гідродинамічних характеристик оборотних гідромашин на основі методів математичного моделювання
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Тиньянова, Ірина Іванівна; Рєзва, Ксенія Сергіївна; Дранковський, Віктор Едуардович
    Питання дослідження та модернізації проточних частин оборотних гідравлічних машин зараз дуже актуальні. При розробці проточних частин оборотних гідромашин широко використовуються математичні моделі опису робочого процесу, які ґрунтуються на різних ступенях його деталізації. В даній роботі розглядається опис робочого процесу на макро- та мікрорівнях, що дає можливість вирішувати комплекс задач в залежності від поставлених цілей. Одним із методів є метод з використанням безрозмірних усереднених параметрів. В роботі отримані рівняння моделі (макрорівень) робочого процесу, які можуть бути використані як для аналізу кінематичних і енергетичних характеристик оборотної гідромашини при фіксованій геометрії проточної частини, так і для чисельного моделювання впливу геометричних параметрів на ці характеристики. Стаття містить залежності витрати, ККД, потужності від геометричних і режимних параметрів, що дозволяють вже на початковій стадії проектування оцінити енергетичні якості оборотної гідромашини. Наведено формулу для визначення кута потоку за напрямним апаратом. Наведено розрахунки енергетичних характеристик для проточних частин оборотних гідромашин ОРО200, ОРО500. Побудовані поверхні гідравлічного ККД для ОРО200 і ОРО500, визначені теоретичні і енергетичні параметри. Для більш досконалого дослідження оборотної гідромашини було проведене чисельне дослідження на мікрорівні за допомогою програми CFD, що дозволило отримати розподіл тисків та швидкостей в проточній частині в турбінному режимі при оптимальних значеннях витрати та обертів. Розглядаються питання дослідження балансу енергії. Аналіз результатів досліджень показав, що гідравлічні втрати займають значну долю від загальних, тому в ході роботи були визначені гідравлічні втрати в елементах проточної частини насос-турбіни на основі методу усереднених безрозмірних параметрів та методу просторової течії. Порівняльний аналіз отриманих результатів за різними моделями з результатами фізичного експерименту показав задовільну збіжність, що свідчить про доцільність застосування обраних методів для дослідження оборотних гідромашин.
  • Ескіз
    Документ
    Застосування методів математичного моделювання при чисельному дослідженні гідродинамічних характеристик високонапірної оборотної гідромашини
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Рєзва, Ксенія Сергіївна; Дранковський, Віктор Едуардович; Шевцов, Вадим Михайлович; Оспіщева, Лізавета Олександрівна
    Як випливає з Енергетичної програми України проектування та побудова гідроакумулюючих станцій є пріоритетним напрямком розвитку гідроенергетики України. Перспектива побудови Закарпатської ГАЕС потребує вирішення ряду питань дослідження та модернізації проточних частин високонапірних оборотних гідравлічних машин. У сучасних умовах роботи енергосистем гострою є проблема покриття пікових навантажень, що викликає необхідність приділяти більше уваги роботі оборотних гідромашини в турбінному режимі. При розробці проточних частин оборотних гідромашин широко використовуються математичні моделі опису робочого процесу, які ґрунтуються на різних ступенях його деталізації. В даній роботі розглядається опис робочого процесу на макро- та мікрорівнях, що дає можливість вирішувати комплекс задач в залежності від поставлених цілей. Результати чисельного розрахунку на макромоделях дозволяють проводити дослідження впливу геометрії окремих елементів проточної частини на гідродинамічні характеристики. У роботі, на першому етапі, застосований метод безрозмірних осереднених параметрів, який дозволяє на етапах проектування проточної частини нової оборотної гідравлічної машини або модернізації її вибрати оптимальну геометрію елементів проточної частини. Даний метод позитивно зарекомендував себе при чисельному дослідженні високонапірних оборотних гідравлічних машин на напори від 200 м до 500 м. При застосуванні даної математичної моделі – макрорівень, необхідно мати геометричні параметри лише в характерних перетинах проточної частини оборотної гідромашини. В ході роботи були досліджені три варіанти проточної частини високонапірної тихохідної оборотної гідромашини ОРО500-В-100. В результаті було визначено, яка геометрія елементів проточної частини значно впливає на гідродинамічні показники гідромашини. Було встановлено, що в підвідній частині (спіральної камери зі статором і направляючому апарату) найбільші значення гідравлічних втрат (до 65 % від загальних). Для другого та третього варіантів проточної частини були змінені параметри саме цих елементів. При зміні параметрів спіральної камери (збільшенні осередненого кута потоку на 10°) привело до збільшення гідравлічного ККД на 1,16 %. При зміні геометрії направляючого апарату – на 0,84 %. Для більш досконального дослідження першого варіанта оборотної гідромашини було проведене чисельне дослідження на мікрорівні за допомогою програми CFD (OpenFOAM), що дозволило отримати розподіл тисків та швидкостей в проточної частині в турбінному режимі при оптимальних значеннях витрати та обертів. Порівняльний аналіз отриманих результатів за різними моделями з результатами фізичного експерименту показав задовільну збіжність, що свідчить про доцільність застосування обраних методів для дослідження високонапірних оборотних гідромашин.
  • Ескіз
    Документ
    Управління і енергетичні моделі оборотних гідромашин
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Сокол, Євген Іванович; Черкашенко, Михайло Володимирович; Дранковський, Віктор Едуардович
    Запропоновані способи управління оборотними гідромашинами з використанням програмованих мікропроцесорних контролерів і гідроапаратури з пропорційним управлінням. Розглянуті питання енергетичної взаємодії потоку в проточній частині високонапірної оборотної гідромашини, яка базується на блочно-ієрархічному підході до математичного моделювання робочого процесу. Розглянуто три моделі кінематичного опису потоку, направлені на вирішення конкретних завдань проектування. Описана кінематична модель потоку, що враховує зсув осесиметричних поверхонь струму в робочому колесі із зміною режиму, яка є найбільш загальною моделлю руху потоку. Дана модель дозволила отримати вирази для коефіцієнта теоретичного напору і коефіцієнтів опорів для різних категорій втрат в робочому колесі, які були записані в безрозмірній формі на підставі теорії гідродинамічної подібності. Застосування безрозмірних параметрів систематизує і узагальнює дані чисельного експерименту. Використання поліноміальних моделей для опису зв'язку між геометричними і режимними параметрами зручно як для проведення чисельних досліджень, так і для аналізу впливу геометричних і режимних параметрів на енергетичні характеристики оборотної гідромашини в турбінному режимі. Представлена математична модель дозволяє проводити аналіз як окремих елементів проточної частини, так і різних категорій втрат, пов'язаних з їх фізичною природою в лопатевих системах. Отримані результати вказують на певну закономірність розподілу втрат в елементах проточної частини, що дозволило розробити стратегію цілеспрямованих модифікацій проточної частини, що задовольняють поставленим завданням. За допомогою чисельного експерименту проведений аналіз впливу окремих видів втрат на енергетичні показники, а також встановлені гранично можливі значення параметрів (витрати, потужності, гідравлічного ККД, коефіцієнта швидкохідності і ін.), які можна отримати за рахунок зменшення втрат.
  • Ескіз
    Документ
    Застосування методу осереднених безрозмірних параметрів для визначення оптимального режиму роботи високонапірної оборотної гідромашини
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Рєзва, Ксенія Сергіївна; Тиньянова, Ірина Іванівна; Косоруков, Олександр Володимирович
    Представлено аналіз робіт в області гідродинамічних розрахунків, який відзначає відсутність єдиних підходів в питанні систематизації та узагальнення результатів проведених досліджень. Запропоновано метод визначення оптимальних параметрів роботи оборотної гідромашини, що базується на безрозмірних осереднених параметрах. Даний метод дає можливість на ранніх етапах проектування нових проточних частин спрогнозувати енергетичні характеристики роботи насос-турбін, визначити їх оптимальні параметри, враховуючи при цьому особливості роботи. Він дозволяє визначити основні параметри в насосному режимі роботи агрегату, для подальшої перевірки енергетичних та кінематичних параметрів в турбінному режимі. В роботі представлені рівняння математичного моделювання робочого процесу обраним методом при вирішенні задачі впливу геометричних параметрів високонапірної оборотної гідромашини на параметри оптимального режиму. Також даний метод дослідження дозволяє візуалізувати отримані результати у вигляді прогнозної характеристики, графіків розподілу втрат, поверхонь ККД (повного або гідравлічного), т. д. У результаті проведення оптимізаційних розрахунків проточних частин гідромашин (ОРО200, ОРО500) було побудовано поверхні гідравлічного ККД, визначено кінематичні та енергетичні параметри, побудовано прогнозну характеристику, з нанесеною на ній линією максимального значення потужності. Проведений порівняльний аналіз отриманих результатів з результатами чісельного дослідження просторової течії і результатами фізичного експерименту показав добру збіжність, що свідчить про доцільність застосування обраного методу для дослідження високонапірних оборотних гідромашин.
  • Ескіз
    Публікація
    Improvement of the working process of hydroturbines and its regulation systems
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Migushchenko, Ruslan; Potetenko, Oleg; Gasiyk, Alexander; Krupa, Evgeniy
    The paper provides the detail analysis of the causes of various types of the vortex motion of the turbulent flow in the inlet parts of the turbine and in the inter-blade channels of the runner. The causes of the appearance of large-scale vortex structures in the meridional sections of the spiral case of radial-axial hydraulic turbines with the heads of 400–500 m are shown. As a result of this phenomenon, in the section of the spiral case the flow is directed in the region of the walls to the runner. In the central part it is directed from the runner, i. e. the spiral case executing its functions of supplying the flow functions only with part of its section – the near-wall zone – where the vortex near-wall flow with increased velocity and energy losses enters to the channels of the runner. These conclusions in the work are argued by extensive experimental data. Energy losses in the spiral case reaches 3–5 % and a complex vortex structure, which enters to the runner, leads to a decrease of the energy characteristics. The flow inlet to the runner using nozzle devices located on the ring in front of the runner is considered in the paper. These nozzle devices increase the velocity by five or more times and provide low losses in the inlet (about 0,5 %) and almost uniform flow in front of the runner with a moment of quantity of motion, which provides an optimal operation of the hydraulic turbine. The improvement of the working flow and control systems is presented in this paper using new design solutions, for which more than ten patents of Ukraine for the invention were obtained. In particular, as a result of this study of the working processes of Francis-Deriaz hydraulic turbines, which allowed the use of blade turbines for the heads of more than 400–500 m up to 800–1000 m with high energy and cavitation characteristics with wide operating areas in terms of rates (powers) and heads, with an increase of 2–7 % average operating efficiency. The working process of a new type of diagonal-axial hydraulic turbine with a very wide operation range in terms of flow and pressure with a significantly increased average operating efficiency, increased operation reliability, which is illustrated by the predictive universal characteristic, is also considered. This characteristic allows the use of rotary-blade hydraulic turbines for heads up to 230–250 m. Therefore, the carried out improvement of the working process of hydraulic turbines and their control systems convincingly proves the advantage of the new scientific and technical solutions in comparison with previously used ones.
  • Ескіз
    Документ
    Дослідження потоку у високонапорних оборотних гідромашинах
    (НТУ "ХПІ", 2017) Рєзва, Ксенія Сергіївна; Дранковський, Віктор Едуардович; Тиньянова, Ірина Іванівна
    Показано застосування методу осереднених параметрів проточної частини високонапорної гідравлічної машини. Викладено методику розрахунку кутів потоку та основних видів втрат енергії в елементах проточної частини, які необхідні для аналізу робочого процесу в проточній частині. Проведено порівняльний аналіз результатів розрахунку методом осереднених параметрів та результатів чисельного дослідження у програмі CFX. Графічно представлено результати чисельного розрахунку просторової течії в оборотній гідравлічній машині.
  • Ескіз
    Документ
    Чисельне моделювання просторового потоку в підводі осьової поворотно-лопатевої гідротурбіни
    (НТУ "ХПІ", 2017) Крупа, Євгеній Сергійович
    Проведено чисельний експеримент, за допомогою програмного комплексу OpenFOAM для трьох модифікацій підводу осьової поворотно-лопатевої турбіни ПЛ20. В результаті проведення чисельного дослідження потоку отримано і проаналізовано поля швидкостей в характерних перетинах підводу гідротурбіни ПЛ20, епюри розподілу швидкостей вздовж перетинів колон статора , значення гідравлічних втрат енергії у підводі. На основі даного аналізу було вибрано варіант підводу з мінімальними втратами та найкращою картиною течії в проточній частині.