Кафедра "Гідравлічні машини ім. Г. Ф. Проскури"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2767

Офіційний сайт кафедри http://web.kpi.kharkov.ua/gdm

Від 2021 року кафедра має назву "Гідравлічні машини імені Г. Ф. Проскури", попередня назва – "Гідравлічні машини" (від 1930 року).

Кафедра заснована на основі гідравлічної лабораторії у 1914 році академіком Г. Ф. Проскурою, первісна назва – кафедра гідромеханіки. У 1923 році була створена кафедра “Авіації”, якою керував також Г. Ф. Проскура, на базі якої в 1930 році був створений Харківський авіаційний інститут (нині Національний аерокосмічний університет “ХАІ”), а кафедра гідромеханіки перейменована в кафедру “Гідравлічні машини”. 2 липня 2021 року кафедра перейменована на честь Георгія Федоровича Проскури – видатного вченого, засновника наукової школи гідромашинобудування і авіації в Україні, члена Президії і голови Відділення технічних наук АН України, заслуженого діяча науки і техніки.

Кафедра "Гідравлічні машини імені Г. Ф. Проскури" готує майбутніх фахівців нової генерації в галузі цифрової гідравліки, гідравлічних машини та гідропневмоприводів, що використовуються практично в усіх галузях промисловості.

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють 2 доктора технічних наук, 10 кандидатів технічних наук; 2 співробітника мають звання професора, 8 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    CFD підхід для аналізу характеристик потоку високонапірної радіально-осьової гідротурбіни
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Миронов, Костянтин Анатолійович; Олексенко, Юлія Юріївна; Миронов, Вадим Костянтинович
    З ростом обчислювальної механіки віртуальні гідравлічні машини стають все більш реалістичними, дають можливість визначити незначні деталі потоку, що в свою чергу неможливо отримати при тестуванні моделей. В данній роботі проведено 3D турбулентний аналіз реального потоку в радіально-осьовій гідравлічній турбіні при трьох відкриттях направляючого апарату та різній швидкості обертання за допомогою програмного забезпечення для обчислювальної динаміки рідин (CFD) Ansys CFX. Обчислюються для отримання характеристик потоку середні значення параметрів потоку, такі як швидкість і кути потоку на вході і на виході з робочого колеса, направляючого апарату і статору. Для поліпшення енергетичних показників на попередньому етапі проектування гідротурбіни проводиться чисельне моделювання потоку. Даний підхід CFD знижує витрати і час в порівнянні з експериментальними підходом і дає можливість удосконалити і аналізувати показники турбіни і її конструкцію до моменту виготовлення моделі. Розрахунковий комплекс програм надає можливість побачити картину розподілу тиску, поле векторів швидкості і руху частинок рідини для обґрунтування та аналізу результатів. Наведені результати розрахункового дослідження підтверджують, що гідравлічний коефіцієнт корисної дії гідравлічної турбіни в значній мірі залежить від втрат в напрямному апараті і робочому колесі і означає, що саме цим елементам варто приділяти найбільші увагу, їх конструкції та узгодженню потоку в них. Отримані розрахункові дані відповідають відомим раніше експериментальним рекомендаціям для високонапірної радіально-осьової гідротурбіни.
  • Ескіз
    Документ
    Study of the spatial flow in the flow part of the high-pressure francis turbine
    (НТУ "ХПІ", 2018) Mironov, Konstantin Anatolievich; Oleksenko, Yuliia Yuriivna; Mironov, Vadim Konstantinovich
    The paper presents some results of a computational study of the spatial turbulent flow of a viscous fluid in the flow part of the high-pressure Francis turbine Fr500, made using the CFX-TASCflow application program package. To improve the energy performance at the preliminary design stage of the turbine, numerical flow simulations should be carried out. This CFD approach reduces costs and time in comparison with the experimental approach and makes it possible to improve and analyze turbine performance and its design before the model is manufactured. The computational complex of programs provides an opportunity to see the picture of pressure distribution, the field of velocity vectors and the movement of fluid particles for substantiation and analysis of results. Numerical modeling of the spatial flow in the flow part of the turbine was carried out to determine changes in the energy characteristics, therefore, the k-ε turbulence model was chosen. As a result of the calculation, the distribution of speeds and pressures in the various elements of the hydraulic turbine was determined at different openings of the guide vane. The analysis of energy losses in the flow part of a Francis turbine: a spiral case, a stator withflat rings, a guide vane, a runner and a draft tube on the optimal operating mode of the hydraulic turbine, as well as an analysis of the effect of opening the guide vane on changes in energy losses in various elements of the flow parts. The results of the computational study confirm that the hydraulic efficiency of a hydraulic turbine largely depends on the losses in the guide vane and the runner, which means it is these elements that should be given the most attention, their design and coordination of the flow in them. The issue of increasing the energy performance of the flow parts of a high-pressure Francis turbine was also considered.
  • Ескіз
    Документ
    Особенности рабочего процесса и структуры потока в межлопастных каналах рабочего колеса и в других элементах проточной части радиально-осевых гидротурбин на напоры 400-600 м
    (НТУ "ХПИ", 2016) Потетенко, Олег Васильевич; Яковлева, Людмила Константиновна; Самба Битори, Трезор Дес Бекет
    Работа посвящена всестороннему комплексному исследованию структуры потока в проточной части, включая межлопастные каналы рабочего колеса и подводящие органы гидротурбины на напоры 500 м. Показано, что возникновение мелко, средне и крупномасштабной завихренности деформирует поток в каналах гидротурбины, вызывая повышенные потери энергии. Предлагается современный метод экспериментального исследования движения жидкости в межлопастных каналах рабочего колеса путем определения распределения давления по поверхностям вращающихся лопастей рабочего колеса. На основе глубокого анализа структуры потока показаны недостатки проточных частей гидротурбин на напоры 400, 500 и 600 м.