Кафедра "Електричні апарати"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/43

Офіційний сайт кафедри http://web.kpi.kharkov.ua/ea

Кафедра "Електричні апарати" була створена в 1931 році при Харківському електротехнічному інституті. Засновником, організатором і першим завідувачем кафедри був видатний фахівець в галузі електротехніки професор Вашура Борис Федорович.

Кафедра входить до складу Навчально-наукового інституту енергетики, електроніки та електромеханіки Національного технічного університету "Харківський політехнічний інститут", веде підготовку фахівців що мають глибокі знання з електромеханіки та різнобічні знання в області комп’ютерної техніки й інформаційних технологій.

У складі науково-педагогічного колективу кафедри працюють: 2 доктора технічних наук, 6 кандидатів технічних наук, 1 кандидат фізико-математичних наук; 5 співробітників мають звання доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Unbalanced load flow with hybrid wavelet transform and support vector machine based Error-Correcting Output Codes for power quality disturbances classification including wind energy
    (Национальный технический университет "Харьковский политехнический институт", 2019) Rahmani, Ala eddine; Slimani, Linda; Bouktir, Tarek
    Purpose. The most common methods to designa multiclass classification consist to determine a set of binary classifiers and to combine them. In this paper support vector machine with Error-Correcting Output Codes (ECOC-SVM) classifier is proposed to classify and characterize the power qualitydisturbances such as harmonic distortion,voltage sag, and voltage swell include wind farms generator in power transmission systems. Firstly three phases unbalanced load flow analysis is executed to calculate difference electric network characteristics, levels of voltage, active and reactive power. After, discrete wavelet transform is combined with the probabilistic ECOC-SVM model to construct the classifier. Finally, the ECOC-SVM classifies and identifies the disturbance type according tothe energy deviation of the discrete wavelet transform. The proposedmethod gives satisfactory accuracy with 99.2% compared with well known methods and shows that each power quality disturbances has specific deviations from the pure sinusoidal waveform,this is good at recognizing and specifies the type of disturbance generated from the wind power generator.