Кафедра "Математичне моделювання та інтелектуальні обчислення в інженерії"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1366

Офіційний сайт кафедри http://web.kpi.kharkov.ua/dpm

Від 2022 року кафедра має назву "Математичне моделювання та інтелектуальні обчислення в інженерії", первісна назва – "Динаміка та міцність машин".

Iсторія кафедри починається в 1930 році, коли в нашому університеті, що називався тоді Харківський механіко-машинобудівний інститут, була створена спеціальність "Динаміка і міцність машин".

Засновниками спеціальності були видатні вчені: академіки Йоффе Абрам Федорович, Обреїмов Іван Васильович, Синельников Кирило Дмитрович, професор Бабаков Іван Михайлович. В різні роки кафедрою завідували: член-корреспондент АН УРСР Майзель Вениамин Михайлович (1936-1941); академік АН УРСР Філіппов Анатолій Петрович (1948-1960), професор, доктор технічних наук, лауреат Державної премії України Богомолов Сергій Іванович (1960-1991); професор, доктор технічних наук, академік АН вищої школи України Львов Геннадій Іванович (1992-2020). Від 2020 року і по теперішній час завідувач кафедри – лауреат премії Президента України для молодих вчених за видатні досягнення, доцент, кандидат технічних наук Водка Олексій Олександрович.

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут". Наукова школа з динаміки і міцності машин, створена в нашому університеті, широко відома у світі.

У складі науково-педагогічного колективу кафедри працюють; 2 доктора технічних наук, 7 кандидатів технічних наук, 1 доктор філософії; 2 співробітника мають звання професора, 5 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Оптимизация круглых пластин при нестационарном нагружении
    (НТУ "ХПИ", 2016) Васильченко, Виктор Федорович; Ломакин, Александр Николаевич
    Рассматриваются круглые пластины, подвергающиеся действию нестационарной нагрузки. Предложен алгоритм решения задачи о пластине минимального веса с ограничениями на перемещения и напряжения. Задача решается на основе метода последовательных приближений. Необходимые условия оптимальности формулируются на основе принципа Понтрягина. На основе данных условий оптимальности и алгоритма метода последовательных приближений разработана универсальная программа оптимизации круглых пластин. С ее помощью находятся конфигурации минимального объема с ограничениями на напряжения и перемещения для произвольного закрепления. При этом исходные и сопряженные переменные для каждого конкретного геометрического исполнения пластины h(r) ищутся путем разложения по собственным формам колебаний. Краевые задачи решаются методом начальных параметров; начальные задачи при этом интегрируются методом Рунге-Кутта. Максимизация гамильтониана производится в конечном наборе точек по радиусу пластины. Приведены результаты расчета оптимальной пластины.