Кафедра "Математичне моделювання та інтелектуальні обчислення в інженерії"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1366

Офіційний сайт кафедри http://web.kpi.kharkov.ua/dpm

Від 2022 року кафедра має назву "Математичне моделювання та інтелектуальні обчислення в інженерії", первісна назва – "Динаміка та міцність машин".

Iсторія кафедри починається в 1930 році, коли в нашому університеті, що називався тоді Харківський механіко-машинобудівний інститут, була створена спеціальність "Динаміка і міцність машин".

Засновниками спеціальності були видатні вчені: академіки Йоффе Абрам Федорович, Обреїмов Іван Васильович, Синельников Кирило Дмитрович, професор Бабаков Іван Михайлович. В різні роки кафедрою завідували: член-корреспондент АН УРСР Майзель Вениамин Михайлович (1936-1941); академік АН УРСР Філіппов Анатолій Петрович (1948-1960), професор, доктор технічних наук, лауреат Державної премії України Богомолов Сергій Іванович (1960-1991); професор, доктор технічних наук, академік АН вищої школи України Львов Геннадій Іванович (1992-2020). Від 2020 року і по теперішній час завідувач кафедри – лауреат премії Президента України для молодих вчених за видатні досягнення, доцент, кандидат технічних наук Водка Олексій Олександрович.

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут". Наукова школа з динаміки і міцності машин, створена в нашому університеті, широко відома у світі.

У складі науково-педагогічного колективу кафедри працюють; 2 доктора технічних наук, 7 кандидатів технічних наук, 1 доктор філософії; 2 співробітника мають звання професора, 5 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Компьтерный анализ прочности колонн элеватора при различных вариантах нагружения. Часть 2
    (Луцький національний технічний університет, 2018) Ларин, Алексей Александрович; Трубаев, Александр Иванович; Юдаев, В. В.
    Проведен анализ прочности колонн элеватора. В работе поставлена цель – на основе конечно-элементного моделирования как объемного тела (далее 3D-моделирования) оценить напряженно-деформированное состояние колонны, при неблагоприятных условиях эксплуатации зернохранилища.
  • Ескіз
    Документ
    Компьтерный анализ прочности колонн элеватора при различных вариантах нагружения. Часть 1
    (Луцький національний технічний університет, 2018) Ларин, Алексей Александрович; Трубаев, Александр Иванович; Юдаев, В. В.
    На основе метода конечных элементов в трехмерной постановке проведен анализ прочности колонн силосов. Расчеты показали, что колонна спроектирована как перегруженная в области капители и работает на пределе кубиковой прочности бетона, хотя по требованиям нормативных документов, которые использовались при ее проектировании, она должна работать в пределах призменной прочности бетона.
  • Ескіз
    Документ
    Анализ прочности насоса с целью продления его ресурса
    (Одеський національний політехнічний університет, 2018) Ларин, Алексей Александрович; Келин, А. А.; Нарыжная, Р. Н.; Потопальская, Ксения Евгеньевна; Трубаев, Александр Иванович
    Рассмотрены вопросы оценки остаточной прочности корпуса водоструйного насоса марки СН-10/50К, работающего в сверхпроектный срок эксплуатации в линии спринклерных насосов энергоблока АЭС. Представлены результаты теоретических исследований его напряженно-деформированного состояния с учетом изменения геометрии корпусных деталей, которое наблюдалось по окончании проектного срока эксплуатации. Оценка статической прочности проводилась для основных эксплуатационных режимов работы насоса (нормальные условия эксплуатации и гидравлические испытания), а также для случая возникновения аварийной ситуации. Соответствующие исследования проведены в рамках численного компьютерного моделирования на основе метода конечных элементов с использованием современных программных комплексов. Разработаны расчетные трехмерные конечно-элементные модели, которые учитывают фактическую геометрию деталей насоса и прогноз ее возможного изменения на период продленного ресурса. Изменение геометрии конструкции учтено на основе экстраполяции данных толщинометрии стенок корпуса, полученных в процессе длительного срока эксплуатации. На основе построенных конечно-элементных моделей последовательно решены задачи теплопроводности и термоупругости. Для оценки остаточной прочности насоса при аварийной ситуации моделировалось явление теплового удара по корпусным деталям. Соответсвующее моделирование осуществлялось решением задач нестационарной теплопроводности и связанной задачи квазистатической термоупругости. Такой подход позволил определить распределение температурного поля во времени при тепловом ударе и распределение параметров напряженно-деформированного состояния насоса в характерные моменты времени.