161 "Хімічні технології та інженерія"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/48416
Переглянути
Документ Термокаталітична переробка вторинної полімерної сировини в паливо для судноплавства(2023) Чернявський, Андрій ВолодимировичДисертація на здобуття наукового ступеня доктора філософії за спеціальністю 161 – Хімічні технології та інженерія (16 – Хімічна інженерія та біоінженерія). – Національний технічний університет «Харківський політехнічний інститут», Міністерство освіти і науки України, Харків, 2023. Дисертаційна робота спрямована на розробку технології отримання морських палив з високим рівнем фізико-хімічних та експлуатаційних властивостей із вторинної полімерної сировини. Об’єкт дослідження – процес отримання морських палив шляхом каталітичного піролізу вторинної полімерної сировини. Предмет дослідження – вплив хімічного складу сировини, технологічних режимів та каталізаторів процесу на вихід та властивості морських палив. У дисертаційній роботі вирішена важлива науково-практична задача, щодо виробництва морських палив, які за рівнем фізико-хімічних та експлуатаційних властивостей відповідають вимогам стандарту ISO 8217:2017, шляхом каталітичного піролізу вторинної полімерної сировини. При формуванні наукових джерел інформації щодо складу, властивостей, сировинної бази та перспектив виробництва в Україні морських палив застосовувався метод критичного аналізу. Теоретичне обґрунтування вибору схеми, технологічних режимів та каталізаторів процесу піролізу, здійснювалося з використанням методу системного аналізу та гіпотезо-творчого методу. Проведення експериментальних досліджень здійснювалося в лабораторних умовах як за показниками, наведеними в ISO 8217:2017, так і тими, що прийнято визначати у лабораторній практиці, згідно методів ДСТУ, ASTM та ISO. Груповий і індивідуальний хімічний склад рідких продуктів піролізу визначався з використанням методу газової хромато-мас-спектрометрії (ГХ/МС) на капілярному газовому хроматографі GС 2010 Plus, фірми Shimadzu, який сьогодні досить широко використовується при ідентифікації хімічних речовин. Визначення вмісту Al+Si проводилось з використанням оптико-емісійного спектрометру з індуктивно зв’язаною плазмою Agilent 5900 ICP-OES. Для статистичної обробки отриманих здобувачем експериментальних даних, використовувався пакет STATISTICA 10. В вступі обгрунтовано актуальність обраної теми дисертаційного дослідження; представлено зв’язок роботи з науковими програмами та темами кафедри; сформульовані мета та основні завдання дослідження; наведено характеристику методів дослідження; визначено наукову новизну та практичне значення отриманих результатів; визначено особистий внесок здобувача; представлено: апробацію результатів дисертаційної роботи, публікації, структуру та обсяг дисертації. В першому розділі дисертаційної роботи визначено склад та існуючу класифікацію морських палив, наведено перелік та проаналізовано основні показники якості, які згідно з ISO 8217:2017, характеризують фізико-хімічні та експлуатаційні властивості морських палив. Розглянуті основні джерела вуглеводневої сировини та технології їх переробки, які сьогодні можна використовувати для виробництва морських палив в Україні. Обґрунтовано перспективність отримання морського палива (MGO) шляхом каталітичного піролізу вторинної полімерної сировини, представленою поліетиленом високої густини (HDPE) та поліпропіленом (РР). В другому розділі представлено матеріали та реактиви, які використовуються в дисертаційному дослідженні. Запропоновано програму досліджень, яка охоплюють усі стадії виконання дисертаційної роботи та представлена: критичним аналізом джерел; формулюванням мети та завдань; визначенням сировини та технології; формулюванням гіпотези дослідження; підготовкою обраної сировини; отриманням каталізатору піролізу; переробкою обраної сировини; поділенням отриманих продуктів; дослідженням отриманих продуктів; обробкою отриманих даних; оцінюванням відповідності стандарту; проектуванням технології виробництва. Наведено методику синтезування цеолітвмісних каталізаторів Zn-Н-ZSM-5, Fe-Н-ZSM-5 та Ni-Н-ZSM-5, які в подальшому, використовувались при проведенні каталітичного піролізу вторинної полімерної сировини на лабораторній двохреакторній (I реактор: t=450-470 °С, Р=0,8-1,0 МПа, каталізатор – суміш (1:1) Zn-Н-ZSM-5/Fe-Н-ZSM-5; II реактор: t=300-320 °С, Р=0,3-0,5 МПа, каталізатор – Ni-Н-ZSM-5) установці. Для оцінки відповідності стандарту, отриманих рідких продуктів піролізу полімерної сировини та їх віднесення до певної марки дистилятного морського палива, використовувались показники, наведені у ISO 8217:2017, а також гігроскопічність, співвідношення Н:С, робоча теплота згоряння. Обробку отриманих експериментальних даних запропоновано здійснювати пакетом STATISTICA 10. В третьому розділі, розглянуто та проаналізовано процес піролізу поліолефінової сировини. При цьому визначено, що до первинних реакцій піролізу відносяться розрив полімерних ланцюгів та утворення алканів, олефінів, вільних радикалів, до вторинних – реакції взаємодії продуктів, утворених під час первинних реакцій. Спираючись на це, здобувачем було висунуто гіпотезу про можливість отримання морського палива шляхом двохстадійного каталітичного піролізу вторинної полімерної сировини. При цьому, необхідно здійснювати керування, за рахунок температури процесу та каталізаторів, реакціями розпаду полімерних структур, синтезу отриманих проміжних продуктів, поліконденсації та ущільнення, деалкілування та гідрування ненасичених і ароматичних сполук. Задля підбору матеріалів (металів) для каталізатору піролізу, який сприятиме зниженню температури процесу, збільшенню виходу рідких продуктів піролізу (фракції з межами википання 180-360(380) °С), підвищенню в них співвідношення Н:С та зниженню вмісту ароматичних сполук, запропоновано певний алгоритм. Використовуючи цей алгоритм для проведення каталітичного піролізу полімерної сировини було запропоновано двохстадійну технологію, яка базується на використанні, на першій стадії процесу, суміш (1:1) цеолітвмісних каталізаторів Zn-H-ZSM-5/Fe-H-ZSM-5, на другій стадії – каталізатор Ni-H-ZSM-5. Причому, в запропонованих каталізаторах міститься 3,0 % ZnО, 2,0 % Fe2О3 та 4,0 % Ni. В четвертому розділі наведено, результати проведених експериментальних досліджень, які повністю підтверджують раніше висунуту здобувачем гіпотезу про можливість отримання морського палива шляхом каталітичного піролізу полімерної сировини. Так, в лабораторних умовах при реалізації двохстадійного каталітичного піролізу вторинної полімерної сировини (HDPE та РР), було отримано 68,5 та 70,0 % фракції 180-360(380) °С. Виконаний аналіз групового та індивідуального хімічного складу цієї фракції показав, що незалежно від полімерної сировини, після першого реактора (каталізатор Zn-H-ZSM-5/Fe-H-ZSM-5) основну частку (37-39 %) вуглеводнів складають олефіни, що свідчить про інтенсивне протікання реакцій розпаду (молекулярна маса ідентифікованих вуглеводнів складає 118-180 од.) вуглецевого ланцюга полімерної сировини. Наявність в продуктах піролізу 9-13 % нафтенів та 18-19 % ароматичних вуглеводнів є слідством протікання реакцій Дільса-Альдера (наприклад, утворення 4-бутил-циклогексану та 4-циклогексил-циклогексану), диспропорціювання водню та алкілування ароматичних ядр алкенами (наприклад, утворення н-метилстиролу, 1-алил-4-метил-бензолу та 1,4-диізопропіл-бензолу). Після другого реактору (каталізатор Ni-H-ZSM-5) основу цієї фракції складають бі- та трициклічні голоядерні сполуки ароматичного та нафтено-ароматичного ряду. Всі сполуки мають більш високу молекулярну масу (142-192 од.). В продуктах піролізу практично відсутні (< 1 %) олефінові вуглеводні в наслідок протікання реакцій гідрування. Також практично відсутні вуглеводні ароматичної будови з довгими аліфатичними радикалами, в наслідок протікання реакції деалкілування. В другому реакторі, відбувається гідрування ароматичних вуглеводнів (ідентифіковано 9,10-дигідроантрацен, 1,2,3,4-тетра-гідроантрацен, пергідрофлуорен, пергідрофенантрен та пергідроантрацен), що впливає на зниження їх загального вмісту на 4 %. Визначенні фізико-хімічні та експлуатаційні показники якості фракцій 180-360(380) °С, згідно з ISO 8217:2017, дозволили їх віднести до марок дистилятних морських палив DMA, DFA, DMZ, DFZ. Також встановлено, що фракції 180-360(380) °С, характеризуються досить високим співвідношення Н:С (для HDPE – 1,68; для РР – 1,69) та робочою теплотою згоряння (для HDPE – 44,0 МДж/кг; для РР – 44,3 МДж/кг), що дає змогу з них виробляти морське паливо, яке відповідає сучасним екологічним тенденціям (наприклад, декарбонізації промисловості), прийнятим в країнах Європейського Союзу. В п’ятому розділі на підставі проведених здобувачем теоретичних та експериментальних досліджень, запропоновано технологічну схему виробництва морського палива (МGO), з вторинної полімерної сировини (HDPE та РР) потужністю 200-500 кг/год. за сировиною. Дана схема складається з трьох основних, взаємопов’язаних ділянок: попередньої підготовки полімерної сировини; технологічної переробки полімерної сировини; зберігання та компаундування товарного продукту. Експлуатація даної схеми не потребує використання зовнішнього джерела водню, а процеси гідрування відбуваються лише за рахунок водню, який утворюється при каталітичному піролізі полімерної сировини. Наведено перелік та технічні характеристики основного технологічного обладнання, визначені небезпечні виробничі фактори (небезпечність за NFPA 704 становить 1-2) та джерела їх виникнення. При практичній реалізації запропонованої здобувачем технологічної схеми в умовах реального виробництва, можна отримати: 64-75 % фракції з межами википання 180-360(380) °С; 10-14 % фракції з межами википання п.к.-180 °С; 7-11 % вуглеводневих газів і водню; 7-10 % твердого залишку. Фракція 180-360(380) °С – цільовий продукт виробництва, який використовується при виробництві моторного палива: морського або автомобільного; фракція п.к.-180 °С використовується як сировина для органічного синтезу або компонент для виробництва автомобільних бензинів; суміш вуглеводневих газів і водню використовується на виробництві як паливо (отримання теплової енергії для реалізації процесу піролізу); твердий залишок – це компонент для виробництва твердих паливних брикетів (якщо зольність твердого залишку перевищує 20 % він використовується як наповнювач при дорожньому будівництві). Розрахунок показників техніко-економічної оцінки ефективності виробництва морського палива з вторинної полімерної сировини шляхом двохстадійного каталітичного піролізу дозволив встановити, що собівартість виробництва 1 т палива складає 21 916,99 грн., рентабельність виробництва знаходиться на рівні 16,0 %, очікуваний економічний ефект дорівнює 2 268,51 грн/т.