161 "Хімічні технології та інженерія"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/48416

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Гідродинамічні і масообмінні характеристики зваженої насадки в стабілізованому пінному шарі
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Репко, Каліф Юрійович
    Дисертація на здобуття наукового ступеня доктора філософії зі спеціальності 161 – хімічні технології та інженерія (16 Хімічна та біоінженерія). – Національний технічний університет «Харківський політехнічний інститут», Харків, 2023. Об’єктом дослідження є процеси гідродинаміки та масопередачі на комбінованих блочних елементах із зваженою шароподібною насадкою в колонному апараті. Предметом досліджень є гідродинамічні і масообмінні характеристики одиничної зони контакту в комбінованому блочному елементі із зваженою шароподібною насадкою, а також їх режимні та конструктивні параметри. Дисертаційна робота присвячена дослідженню масообмінного обладнання для абсорбційних та десорбційних процесів при безпосередньому контакті газу і рідини з використанням комбінованих блочних елементів із зваженою шароподібною насадкою, а також більш глибокому опису ціх процесів, що є актуальним завданням хімічної технології. В дисертаційній роботі вирішена науково-практична задача з підвищення ефективності роботи колонних апаратів із протитечійним рухом фаз завдяки суміщенню та комбінуванню в одному апараті кількох видів контактних пристроїв – регулярних та нерегулярних, а також при використанні режиму розвинутого псевдозрідження. Для зменшення шкідливого впливу бризкоунесення на ефективність тарілки та контактного блоку в сепараційному просторі між тарілками розміщують стабілізатори газорідинного шару при роботі апаратів у інтенсивних режимах при швидкості газу більше 2,5 м/с. Ці стабілізатори також самі є додатковою зоною контакту фаз та працюють одночасно як сепаратори. Для ефективної роботи комбінованого блочного елементу із тарілками провального типу великого вільного перетину зі зваженою шароподібною насадкою конструкція повинна мати велику продуктивність як по газу так і по рідини, мати відносно невеликий гідравлічний опір і володіти достатніми сепараційними характеристиками. Розроблено комбінований блочний елемент який складається із провальної тарілки, шароподібної проникної пористої насадки та стабілізатора газорідинного шару. Така блочна секція відрізняється широким робочим діапазоном, зменшує міжсекційне бризковіднесення та може працювати у широкому діапазоні навантажень як газової, так і рідкої фаз, що дозволяє збільшувати продуктивність та ефективність масообмінних колон при їх реконструкції. У вступі обґрунтовано вибір теми дослідження та актуальність дисертаційної роботи, сформульовано мету та задачі, визначено об’єкт, предмет і методи дослідження, показано зв’язок дисертаційного дослідження з науково-практичною роботою кафедри, наведено дані про наукову новизну, практичне значення отриманих результатів. У першому розділі проведено аналіз результатів попередніх досліджень за темою дисертаційної роботи. На підставі аналізу літературних джерел, було встановлено, що в даний час розробляється безліч конструкцій зважених та регулярних насадок, опорні решітки для зваженої насадки також мають варіювання за конструкцією. При цьому постійно йдуть пошуки більш ефективних масообмінних поверхонь для конкретний технологічних процесів. Апарати зі зваженою псевдозрідженою насадкою можуть бути вдосконалені в напрямку зниження енерговитрат, що є важливим для процесів очищення газів. Серед цієї категорії обладнання окремо виділяються комбіновані апарати з рухомою насадкою, які є складними конструкціями, що поєднують в собі елементи барботажних апаратів та апаратів з трифазним псевдозрідженим газорідинним шаром. Були проаналізовані сучасні регулярні насадкові структури. Розвиток регулярних насадок йде в напрямку створення структурованих насадок зі складними каналами для проходу газу і гофрованою листовою поверхнею, що дозволяє рівномірно розподілити рідину і створити умови для ефективного контакту фаз і здійснення процесу масообміну. В якості насадки для апаратів з псевдозрідженим шаром застосовуються насадкові тіла різної форми, виготовлені з матеріалів, стійких у відповідних робочих середовищах. З точки зору енерговитрат апарати повинні володіти низьким гідравлічним опором. Одним з факторів, що впливають на зниження гідравлічного опору газу, є зменшення щільності рухомих насадкових тіл, при якій, перш за все, забезпечується їх інтенсивний рух у всьому обсязі шару. З метою збільшення поверхні контакту фаз порожнисті сферичні тіла виконуються з наскрізними отворами, забезпечуються лопатями краплеподібної або тороідальної форми, а суцільна кульова насадка – у вигляді з'єднаних пружною половинок, з наскрізними каналами, а також з гофрами на поверхні, шипами і голками. З метою зменшення енергетичних витрат на проведення процесу масообміну доцільно застосування рухомі насадкові тіла з сітчастих матеріалів, такі матеріали дозволяють виготовляти насадки з високорозвиненою поверхнею контакту фаз, які при цьому мають низьку насипну щільність. Одночасно зменшенням довжини блоків із насадками які працюють у активних гідродинамічних режимах досягається більші значення коефіцієнтів масовіддачі. На підставі отриманих результатів аналізу обрано напрями досліджень та поставлені основні задачі дисертаційної роботи. У другому розділі представлений опис експериментальних установок, новий тип апарату із контактними комбінованими блочними елементами, приведені варіанти конструкції блоків та шароподібних насадкових елементів. Для дослідження гідродинамічних закономірностей нових конструкцій наведена установка для експериментального визначення висоти газорідинного шару, гідравлічного опору, газовмісту та показників бризковіднесення, також представлені методики проведення експериментальних досліджень. В процесі експериментальних досліджень використовувалися методи візуального спостереження поведінки трифазної системи всередині комбінованого блочного елементу, методами інструментальних вимірювань визначали гідродинамічні характеристики. Для оцінки якісного і кількісного складу сумішей використовували методи фізико-хімічного аналізу. Графічне представлення та статистичну обробку результатів дослідження проводили з використанням методів математичної статистики та прикладного програмного забезпечення. Для визначення характеристик масопереносу та вивчення фазової масовіддачі у розділі представлена установка для дослідження процесів поглинання аміаку та десорбції діоксиду вуглецю в потік повітря на комбінованих блочних елементах та обрана методика для обробки експериментальних даних і оцінки похибки вимірів. У третьому розділі представлені результати теоретичних та експериментальних досліджень характеристик гідродинаміки для комбінованого блочного елементу. Були визначені зони та режими роботи трифазної газорідинної системи, які відрізняються від досліджених раніше. Отримані залежності для висоти пінного шару, гідродинамічного опору комбінованого блочного елементу для визначення робочих параметрів нової конструкції. Рекомендована висота розташування стабілізатора над полотном тарілки 250-300 мм. Показано, що при застосуванні стабілізації газовміст у комбінованому блочному елементі скорочується, а це призводить до більш стабільної та рівномірної роботи апарату. У розділі наведені рівняння для розрахунку висоти газорідинного шару, гідравлічного опору, відносної щільності газорідинного шару яка характеризує газовміст, приведені емпіричні залежності для визначення величини бризковіднесення для різних режимів роботи комбінованого блочного елементу. У четвертому розділі приведено результати експериментальних досліджень параметрів масообміну при роботі комбінованого блочного елемента із застосуванням стабілізації. Визначили залежності для розрахунку ефективності роботи комбінованого блочного елементу від конструктивних та режимних параметрів. Результати розрахунків за отриманими залежностями показують достатньо високу кореляцію із експериментальними даними, а відхилення для залежностей коливається в межах 5-15%. У п’ятому розділі наведені рекомендації із впровадження дослідженої конструкції із комбінованими блочними елементами із зваженою насадкою у промислові технологічні схеми. Запропоновано модернізований апарат для санітарної промивки технологічних газів содового виробництва. Дані рекомендації щодо впровадження апаратів у виробництвах мінеральних добрив, а також при реконструкції апаратів декарбонізації у технологічних системах водопідготовки для ТЕЦ і котелень. За висновками щодо ефективності дисертаційного дослідження відзначені такі наукові результати: 1. Вперше запропоновано механізм формування потоків взаємодіючих фаз у комбінованому блочному елементі; виявлено існування 5 режимів роботи трифазної газорідинної системи. 2. Вперше отримані залежності висоти пінного шару, гідродинамічного опору комбінованого блочного елементу для двох режимів роботи даної конструкції. Встановлені залежності для розрахунку відносної щільності газорідинного шару для газорідинного шару, який формується у комбінованому блочному елементі для двох основних робочих режимів конструкції. 3. Встановлені рекомендовані конструктивні параметри стабілізатору піни: висота блоку 50 мм, кут нахилу гофри до горизонтальної осі – 45о, кут між гранями гофри ламелей блоку – 60о, висота грані гофрування 10-15 мм. Обґрунтована висота розташування стабілізатора над провальною тарілкою у діапазоні 250-300 мм. Показано, що при застосуванні стабілізаторів пінного шару разом із зваженою шароподібною насадкою газовміст на контактному елементі зменшується, що сприяє стабільній та рівномірній роботи апарату. 4. Розширені уявлення про механізм утворення бризковіднесення в комбінованому блочному елементі та наведені емпіричні залежності для визначення його величини залежно від режимних параметрів. 5. Отримали подальшого розвитку залежності для розрахунку ефективності роботи комбінованого блочного елементу залежно від режимних та конструктивних параметрів, що описують процеси, які спостерігались при експериментальних дослідженнях та показують достатню кореляцію із експериментальними даними. Достовірність отриманих теоретичних результатів підтверджено експериментальною перевіркою. Практичне значення отриманих результатів дослідження полягає в тому, що запропоновано нову конструкцію зваженої пористої насадки для використання у контактних апаратах із провальними тарілками у активному гідродинамічному режимі розвинутого псвдозрідження із стабілізацією газорідинного шару. Надано відповідні рекомендації щодо впровадження розробленої насадки у промислову практику та щодо проектування апаратів із запропонованим контактним елементом.