161 "Хімічні технології та інженерія"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/48416
Переглянути
2 результатів
Результати пошуку
Документ Гідродинамічні і масообмінні характеристики зваженої насадки в стабілізованому пінному шарі(Національний технічний університет "Харківський політехнічний інститут", 2023) Репко, Каліф ЮрійовичДисертація на здобуття наукового ступеня доктора філософії зі спеціальності 161 – хімічні технології та інженерія (16 Хімічна та біоінженерія). – Національний технічний університет «Харківський політехнічний інститут», Харків, 2023. Об’єктом дослідження є процеси гідродинаміки та масопередачі на комбінованих блочних елементах із зваженою шароподібною насадкою в колонному апараті. Предметом досліджень є гідродинамічні і масообмінні характеристики одиничної зони контакту в комбінованому блочному елементі із зваженою шароподібною насадкою, а також їх режимні та конструктивні параметри. Дисертаційна робота присвячена дослідженню масообмінного обладнання для абсорбційних та десорбційних процесів при безпосередньому контакті газу і рідини з використанням комбінованих блочних елементів із зваженою шароподібною насадкою, а також більш глибокому опису ціх процесів, що є актуальним завданням хімічної технології. В дисертаційній роботі вирішена науково-практична задача з підвищення ефективності роботи колонних апаратів із протитечійним рухом фаз завдяки суміщенню та комбінуванню в одному апараті кількох видів контактних пристроїв – регулярних та нерегулярних, а також при використанні режиму розвинутого псевдозрідження. Для зменшення шкідливого впливу бризкоунесення на ефективність тарілки та контактного блоку в сепараційному просторі між тарілками розміщують стабілізатори газорідинного шару при роботі апаратів у інтенсивних режимах при швидкості газу більше 2,5 м/с. Ці стабілізатори також самі є додатковою зоною контакту фаз та працюють одночасно як сепаратори. Для ефективної роботи комбінованого блочного елементу із тарілками провального типу великого вільного перетину зі зваженою шароподібною насадкою конструкція повинна мати велику продуктивність як по газу так і по рідини, мати відносно невеликий гідравлічний опір і володіти достатніми сепараційними характеристиками. Розроблено комбінований блочний елемент який складається із провальної тарілки, шароподібної проникної пористої насадки та стабілізатора газорідинного шару. Така блочна секція відрізняється широким робочим діапазоном, зменшує міжсекційне бризковіднесення та може працювати у широкому діапазоні навантажень як газової, так і рідкої фаз, що дозволяє збільшувати продуктивність та ефективність масообмінних колон при їх реконструкції. У вступі обґрунтовано вибір теми дослідження та актуальність дисертаційної роботи, сформульовано мету та задачі, визначено об’єкт, предмет і методи дослідження, показано зв’язок дисертаційного дослідження з науково-практичною роботою кафедри, наведено дані про наукову новизну, практичне значення отриманих результатів. У першому розділі проведено аналіз результатів попередніх досліджень за темою дисертаційної роботи. На підставі аналізу літературних джерел, було встановлено, що в даний час розробляється безліч конструкцій зважених та регулярних насадок, опорні решітки для зваженої насадки також мають варіювання за конструкцією. При цьому постійно йдуть пошуки більш ефективних масообмінних поверхонь для конкретний технологічних процесів. Апарати зі зваженою псевдозрідженою насадкою можуть бути вдосконалені в напрямку зниження енерговитрат, що є важливим для процесів очищення газів. Серед цієї категорії обладнання окремо виділяються комбіновані апарати з рухомою насадкою, які є складними конструкціями, що поєднують в собі елементи барботажних апаратів та апаратів з трифазним псевдозрідженим газорідинним шаром. Були проаналізовані сучасні регулярні насадкові структури. Розвиток регулярних насадок йде в напрямку створення структурованих насадок зі складними каналами для проходу газу і гофрованою листовою поверхнею, що дозволяє рівномірно розподілити рідину і створити умови для ефективного контакту фаз і здійснення процесу масообміну. В якості насадки для апаратів з псевдозрідженим шаром застосовуються насадкові тіла різної форми, виготовлені з матеріалів, стійких у відповідних робочих середовищах. З точки зору енерговитрат апарати повинні володіти низьким гідравлічним опором. Одним з факторів, що впливають на зниження гідравлічного опору газу, є зменшення щільності рухомих насадкових тіл, при якій, перш за все, забезпечується їх інтенсивний рух у всьому обсязі шару. З метою збільшення поверхні контакту фаз порожнисті сферичні тіла виконуються з наскрізними отворами, забезпечуються лопатями краплеподібної або тороідальної форми, а суцільна кульова насадка – у вигляді з'єднаних пружною половинок, з наскрізними каналами, а також з гофрами на поверхні, шипами і голками. З метою зменшення енергетичних витрат на проведення процесу масообміну доцільно застосування рухомі насадкові тіла з сітчастих матеріалів, такі матеріали дозволяють виготовляти насадки з високорозвиненою поверхнею контакту фаз, які при цьому мають низьку насипну щільність. Одночасно зменшенням довжини блоків із насадками які працюють у активних гідродинамічних режимах досягається більші значення коефіцієнтів масовіддачі. На підставі отриманих результатів аналізу обрано напрями досліджень та поставлені основні задачі дисертаційної роботи. У другому розділі представлений опис експериментальних установок, новий тип апарату із контактними комбінованими блочними елементами, приведені варіанти конструкції блоків та шароподібних насадкових елементів. Для дослідження гідродинамічних закономірностей нових конструкцій наведена установка для експериментального визначення висоти газорідинного шару, гідравлічного опору, газовмісту та показників бризковіднесення, також представлені методики проведення експериментальних досліджень. В процесі експериментальних досліджень використовувалися методи візуального спостереження поведінки трифазної системи всередині комбінованого блочного елементу, методами інструментальних вимірювань визначали гідродинамічні характеристики. Для оцінки якісного і кількісного складу сумішей використовували методи фізико-хімічного аналізу. Графічне представлення та статистичну обробку результатів дослідження проводили з використанням методів математичної статистики та прикладного програмного забезпечення. Для визначення характеристик масопереносу та вивчення фазової масовіддачі у розділі представлена установка для дослідження процесів поглинання аміаку та десорбції діоксиду вуглецю в потік повітря на комбінованих блочних елементах та обрана методика для обробки експериментальних даних і оцінки похибки вимірів. У третьому розділі представлені результати теоретичних та експериментальних досліджень характеристик гідродинаміки для комбінованого блочного елементу. Були визначені зони та режими роботи трифазної газорідинної системи, які відрізняються від досліджених раніше. Отримані залежності для висоти пінного шару, гідродинамічного опору комбінованого блочного елементу для визначення робочих параметрів нової конструкції. Рекомендована висота розташування стабілізатора над полотном тарілки 250-300 мм. Показано, що при застосуванні стабілізації газовміст у комбінованому блочному елементі скорочується, а це призводить до більш стабільної та рівномірної роботи апарату. У розділі наведені рівняння для розрахунку висоти газорідинного шару, гідравлічного опору, відносної щільності газорідинного шару яка характеризує газовміст, приведені емпіричні залежності для визначення величини бризковіднесення для різних режимів роботи комбінованого блочного елементу. У четвертому розділі приведено результати експериментальних досліджень параметрів масообміну при роботі комбінованого блочного елемента із застосуванням стабілізації. Визначили залежності для розрахунку ефективності роботи комбінованого блочного елементу від конструктивних та режимних параметрів. Результати розрахунків за отриманими залежностями показують достатньо високу кореляцію із експериментальними даними, а відхилення для залежностей коливається в межах 5-15%. У п’ятому розділі наведені рекомендації із впровадження дослідженої конструкції із комбінованими блочними елементами із зваженою насадкою у промислові технологічні схеми. Запропоновано модернізований апарат для санітарної промивки технологічних газів содового виробництва. Дані рекомендації щодо впровадження апаратів у виробництвах мінеральних добрив, а також при реконструкції апаратів декарбонізації у технологічних системах водопідготовки для ТЕЦ і котелень. За висновками щодо ефективності дисертаційного дослідження відзначені такі наукові результати: 1. Вперше запропоновано механізм формування потоків взаємодіючих фаз у комбінованому блочному елементі; виявлено існування 5 режимів роботи трифазної газорідинної системи. 2. Вперше отримані залежності висоти пінного шару, гідродинамічного опору комбінованого блочного елементу для двох режимів роботи даної конструкції. Встановлені залежності для розрахунку відносної щільності газорідинного шару для газорідинного шару, який формується у комбінованому блочному елементі для двох основних робочих режимів конструкції. 3. Встановлені рекомендовані конструктивні параметри стабілізатору піни: висота блоку 50 мм, кут нахилу гофри до горизонтальної осі – 45о, кут між гранями гофри ламелей блоку – 60о, висота грані гофрування 10-15 мм. Обґрунтована висота розташування стабілізатора над провальною тарілкою у діапазоні 250-300 мм. Показано, що при застосуванні стабілізаторів пінного шару разом із зваженою шароподібною насадкою газовміст на контактному елементі зменшується, що сприяє стабільній та рівномірній роботи апарату. 4. Розширені уявлення про механізм утворення бризковіднесення в комбінованому блочному елементі та наведені емпіричні залежності для визначення його величини залежно від режимних параметрів. 5. Отримали подальшого розвитку залежності для розрахунку ефективності роботи комбінованого блочного елементу залежно від режимних та конструктивних параметрів, що описують процеси, які спостерігались при експериментальних дослідженнях та показують достатню кореляцію із експериментальними даними. Достовірність отриманих теоретичних результатів підтверджено експериментальною перевіркою. Практичне значення отриманих результатів дослідження полягає в тому, що запропоновано нову конструкцію зваженої пористої насадки для використання у контактних апаратах із провальними тарілками у активному гідродинамічному режимі розвинутого псвдозрідження із стабілізацією газорідинного шару. Надано відповідні рекомендації щодо впровадження розробленої насадки у промислову практику та щодо проектування апаратів із запропонованим контактним елементом.Документ Дослідження теплових і масообміних процесів при утилізації тепла викидних газів промисловості в пластинчатих теплообмінних апаратах(Національний технічний університет "Харківський політехнічний інститут", 2020) Кусаков, Сергій КостянтиновичДисертація на здобуття наукового ступеня кандидата технічних наук (доктора філософії) за спеціальністю 161 – Хімічні технології та інженерія. – (16 – Хімічна та біоінженерія) – Національний технічний університет "Харківський політехнічний інститут" Міністерства освіти і науки України, Харків, 2020 р. Дисертація подана до захисту у спеціалізованої вченої раді ДФ 64.050.046. в Національному технічному університеті "Харківський політехнічний інститут". Дисертація присвячена вирішенню актуальної науково-практичної задачі підвищення енергетичної ефективності підприємств за рахунок процесу утилізації тепла низького температурного потенціалу викидних газів промислових процесів з використанням пластинчастих теплообмінних апаратів розбірної конструкції. Проведено аналітичний огляд науково-технічної інформації щодо промислових та поновлюваних природних джерел тепла низького потенціалу та особливостей їх використання. Сформульовано основні вимоги до теплообмінного обладнання для використання тепла низького потенціалу і доведено переваги пластинчатих теплообмінних апаратів при реалізації цих процесів. Проаналізовано роботи з методами розрахунку пластинчастих теплообмінних апаратів для утилізації тепла газових потоків на основі дослідження тепло- та масовіддачі у паро-газовій фазі, тепловіддачі у плівці конденсату, тепловіддачі у однофазному потоці охолоджуючої субстанції, гідравлічного опору однофазному та двофазному потоку в каналах апаратів. На базі аналізу теоретичних основ процесу показано, що можливості інтенсифікації тепло- та масо обмінних процесів в каналах пластинчастих теплообмінників далеко не вичерпані та потребують розвинення підходів щодо прогнозування роботи цих апаратів в умовах охолодження конденсаційних газових потоків та розробки надійних та точних методів оптимального розрахунку на основі експериментальних та теоретичних досліджень з використанням методів математичного моделювання. Наведено опис експериментального стенду для дослідження процесу конденсації водяної пари із суміші з повітрям у моделях гофрованого поля каналів між пластинами пластинчастого теплообмінника. Стенд дозволяє проведення експериментів в достатньому для вивчення процесів утилізації скидного тепла діапазоні зміни параметрів паро - повітряної суміші та охолоджуючої води: температура охолоджуючої води 20–95 °С; абсолютний тиск суміші водяної пари з повітрям 0,101–0,42 МПа; швидкість охолоджуючої води в каналах 0,11–1,1 м/с; масова швидкість суміші пари та повітря 4–85 г/(м2с); об’ємна частка повітря у суміші на вході до каналу 0,03–0,85. Вимірюються температури потоків а також тиск на вході та виході з каналів, розходи потоків, локальні температури потоків у шести точках вздовж каналів. Експерименти проведені на трьох зразках моделей каналів з однаковим кутом нахилу гофрів до напряму течії 60º та різним шагом геометрично подібних гофрів: 5; 7,5 та 10 мм. Це дозволило дослідити вплив масштабного фактору на розрахункові рівняння в умовах течії конденсаційного двофазного потоку у каналах складної геометричної форми пластинчастих теплообмінників. Розроблено математичну модель процесу конденсації пари із суміші з повітрям на гофрованому полі каналів пластинчастих теплообмінників та в експериментальних моделях гофрованого поля каналів використаних в роботі. Математична модель складається із системи одномірних диференційних рівнянь відповідно до локальних балансів тепла та маси на малих ділянках каналів вздовж поверхні теплопередачі. Система доповнена кореляційними співвідношеннями для розрахунку коефіцієнтів тепловіддачі та тертя у однофазному потоці в каналах пластинчастих теплообмінників дослідженої геометричної форми гофрування. Кореляційні співвідношення для тепло- та масообміну, так само як для втрат тиску двофазного потоку, базуються на кореляціях однофазного потоку з використанням різних теоретичних положень по впливу поперечного потоку маси до передаючої тепло поверхні та структури двофазного потоку в каналі. Замикають систему рівнянь алгебраїчні співвідношення для розрахунку температури та тиску насичення пари за умов рівноваги газової та рідинної фаз, розрахунку теплофізичних властивостей компонентів та сумішей приймаючих участь в процесі. Рішення математичної моделі реалізоване у вигляді програмного забезпечення для персонального комп’ютера з використанням чисельного методу кінцевих різниць. Рішення моделі дозволяє отримати основні параметри процесу на гофрованому полі в каналах пластинчастих теплообмінних апаратів та простежити розвиток процесу вздовж каналів. Розроблено методику ідентифікації параметрів рівнянь для розрахунку локальних коефіцієнтів масовіддачі, тепловіддачі та втрат тиску в двофазному потоці на базі статистичного порівняння результатів математичного моделювання інтегральних характеристик процесу та їх значень отриманих в експериментальних дослідженнях. На основі цієї методики отримано формулу розрахунку впливу поперечного потоку маси на локальні коефіцієнти масовіддачі враховуючу теоретичну модель застійного шару та вплив зміни щільності поперек потоку згідно теорії турбулентного прикордонного шару з відсмоктуванням. Також рекомендовано формулу розрахунку локальних коефіцієнтів конвекційної тепловіддачі в умовах впливу поперечного потоку маси. Показана достатня для розрахунків конденсації пари в присутності неконденсованого газу точність рівняння запропонованого на базі дисперсної кільцевої моделі течії для термічного опору плівки конденсату в каналах пластинчастих теплообмінників. Одержано рівняння для розрахунку втрат тиску у двофазному потоці з конденсацією парової компоненти парогазової суміші з урахуванням зміни структури двофазного потоку вздовж каналу. На початкових ділянках каналу структура потоку відповідає моделі роздільної течії фаз запропонованої Локхартом та Мартінеллі. Зі зростанням розходу сконденсованої рідкої фази структура потоку стає більш близькою до дисперсної кільцевої моделі течії. Встановлено границю переходу між цими режимами і запропоновані рівняння для розрахунку локальних втрат тиску у кожному з таких режимів. Одержане рівняння для дисперсної кільцевої моделі течії враховує також вплив поверхневого натягу рідини у двофазному потоці на втрати тиску за рахунок введення залежності від критерія Вебера. Це дозволяє використовувати це рівняння для каналів з однаковою формою гофрування пластин але з різним масштабним фактором гофрування. Розроблено математичну модель промислового пластинчастого теплообмінника для утилізації тепла конденсаційних газових потоків на базі пластин серійного виробництва. Модель базується на розгляді каналів утворених між пластинами як складених із зон розподілу потоків теплоносіїв на вході та виході та основного гофрованого поля. Зроблено припущення що основні процеси теплопередачі та конденсації пари протікають на цьому гофрованому полі а вплив зон розподілу потоків може бути враховано як зони локального гідравлічного опору. У випадку двофазного потоку на виході з теплообмінника необхідно введення поправки розрахованої по методу розробленому для основного гофрованого поля каналів. На базі математичної моделі розроблено метод розрахунку пластинчастих теплообмінників утилізації тепла викидних газових потоків. Метод дозволяє вести розрахунок апаратів з промислово виготовлених пластин по даним про їх геометричні розміри та характеристики гофрування на їх поверхні. Розроблено методику оптимального використання тепла, утилізованого від конденсаційних газових потоків, з залученням методів інтеграції теплових процесів заснованих на теорії пінч аналізу. Гаряча складова крива процесу в конденсаційному газовому потоці будується враховуючи умови рівноваги пари як реального газу та утвореного конденсату. Інтеграція процесу охолодження конденсаційної газової суміші з потоками які використовують утилізоване тепло виконується з встановленням оптимальної структури системи теплообмінників. Показано доцільність розподілу потоку конденсаційної газової суміші на газову та рідку частини після досягнення певного рівня температури. Запропонований і розроблений метод оптимального визначення поверхні теплопередачі системи встановлених пластинчастих теплообмінників за критерієм приведених витрат, який дозволяє реалізувати найбільшу техніко-економічну ефективність роботи системи. Метод проілюстровано на конкретному прикладі утилізації тепла газів які надходять після процесу сушіння. Розроблено схему установки для утилізації тепла викидних газів після процесу сушки тютюну на тютюновій фабриці. Визначено основні потоки на підприємстві які можна використати для прийому вилученого тепла. Це потоки системи опалювання та гарячого водопостачання підприємства. Розраховані оптимальні теплообмінні пластинчасті апарати та виконано підбір апаратури для регулювання процесу та його реалізації в умовах працюючого виробництва. Установку виготовлено і змонтовано на діючій тютюновій фабриці. Проведено випробування пілотного пластинчастого теплообмінника утилізації тепла викидних газів процесу сушіння тютюну. Одержані результати підтвердили адекватність розробленої математичної моделі та точність розробленого методу розрахунку достатню для інженерного користування. Використання розробленої утилізаційної установки з пластинчатим теплообмінником дозволило залучити на потреби опалення підприємства більше 600 кВт теплової енергії, яка до того просто викидалася у навколишнє середовище. Це призвело до скорочення об’ємів спалюваного природного газу використаного для опалення приміщень.