2024

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/76250

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Моделі дистанційної ідентифікації параметрів динамічних об’єктів з використанням трансформерів виявлення та оптичного потоку
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Нікуліна, Олена Миколаївна; Северин, Валерій Петрович; Кондратов, Олексій Михайлович; Ольховий, Олексій Михайлович
    Задачі дистанційної ідентифікації параметрів динамічних об’єктів є важливими для різноманітних галузей, включаючи комп’ютерний зір, робототехніку, автономні транспортні засоби, системи відеоспостереження та багато інших. Традиційні методи розв’язання цих задач стикаються з проблемами недостатньої точності та ефективності визначення динамічних параметрів в умовах швидко змінюваних середовищ та складних динамічних сценаріїв. Розглядаються сучасні методи ідентифікації параметрів динамічних об’єктів з використанням технологій трансформерів виявлення та оптичного потоку. Трансформер виявлення є одним з новітніх підходів у галузі комп’ютерного зору, що використовує архітектуру трансформера для завдань детектування об’єктів. Цей трансформер інтегрує процеси виявлення об’єктів і визначення їхніх меж у єдину модель end-to-end, що значно покращує точність та швидкість обробки. Використання трансформерів дозволяє моделі ефективно обробляти інформацію з усього зображення одночасно, що сприяє кращому розпізнаванню об’єктів навіть у складних умовах. Оптичний потік є методом аналізу руху, що визначає швидкість та напрямок руху пікселів між послідовними кадрами відео. Цей метод дозволяє отримати детальну інформацію про динаміку сцени, що є критично важливим для точного відстеження та ідентифікації параметрів рухомих об’єктів. Пропонується інтеграція трансформерів виявлення та оптичного потоку для підвищення точності ідентифікації параметрів динамічних об’єктів. Комбінація цих двох методів дозволяє використовувати переваги обох підходів: високу точність детектування об’єктів та детальну інформацію про їхній рух. Проведені експерименти показують, що запропонована модель значно перевершує традиційні методи як у точності визначення параметрів об’єктів, так і у швидкості обробки даних. Ключові результати дослідження свідчать про те, що інтеграція трансформерів виявлення та оптичного потоку забезпечує надійне і швидке визначення параметрів рухомих об’єктів у реальному часі, що може бути застосовано у різних практичних сценаріях. Проведені дослідження також показали потенціал для подальшого вдосконалення методів обробки даних та їхнього застосування у складних динамічних середовищах. Отримані результати відкривають нові перспективи для розробки інтелектуальних систем моніторингу та керування, що здатні адаптуватися до швидкозмінних умов навколишнього середовища, підвищуючи ефективність та безпеку їхньої роботи.
  • Ескіз
    Публікація
    Синтез згорткових нейронних мереж та довгої короткочасної пам’яті для детектування профілеративної ретинопатії
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Прочухан, Дмитро Володимирович
    Досліджено ефективність комбінації згорткових нейронних мереж та довгої короткочасної пам’яті в діагностиці профілеративної ретинопатії. Розглянуто способи синтезу вказаних видів мереж. Наведено переваги використання згорткової нейронної мережі ResNeXt-101 у порівнянні з ResNet-101. Розроблено нейромережеву модель, що синтезує вказану мережу з мережею довгої короткочасною пам’яті. Проведено навчання моделі. Наведено механізми функціонування вказаної моделі. За допомогою розробленої моделі розв’язана задача детектування профілеративної ретинопатїї. Отримано високі показники точності класифікації.