2024

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/76250

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Аналіз проблеми прогнозування трендів кріптовалютного ринку та сучасні підходи до її вирішення
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Москаленко, Валентина Володимирівна; Фонта, Наталія Григорівна; Гавриленко, Антон Владиславович; Безчастний, Олексій Максимович
    Розглянуто актуальну проблему прогнозування трендів кріптовалютного ринку та сучасні підходи до їх вирішення. Визначено два основних фактори, які впливають на вартість криптовалюти – це розмір ринку криптовалюти та темпи зростання обсягів ринку. Наведені результати досліджень щодо перспектив крипторинку, у тому числі те, що біткоїн у майбутньому може бути захистом від падіння курсу долара США для учасників фінансового ринку. Також дослідники розглядають біткоїни не як готівку, а як інвестиційний актив. Зроблено висновок, що регулювання та економічна політика, яка пов’язана з використанням криптовалют, поступово посилюються багатьма країнами у міру підвищення її інвестиційної привабливості. Надано аналіз задачі прогнозування тренду ринка криптовалюти. Надано аналіз досліджень та публікацій щодо методів прогнозування вартості криптовалюти. Традиційні моделі часових рядів, такі як модель ARIMA, продовжують бути популярними у фінансовому прогнозуванні, але її використання менш ефективне для ринків з високою волатильністю, що характерно для криптовалют. Прогнозування ціни криптовалюти – це проблема часових рядів, яку можна вирішити за допомогою регресії та інших методів машинного навчання. Наведені результати сучасних досліджень щодо потенціалу машинного навчання у виявленні складних трендів та закономірностей. Доведено, що методи глибокого навчання можуть бути ефективними для прогнозування часових рядів зі значними коливаннями та з майже хаотичною та непередбачуваною поведінкою. Зроблено висновок, що ключовим аспектом є створення гнучких моделей, які можуть адаптуватися до нових даних та змін у ринковій динаміці. Комбінування традиційних методів технічного, факторного аналізу з інноваційними методами машинного навчання може призвести до створення потужних гібридних моделей. Ці моделі використовують як кількісні, так і якісні дані для розробки більш точних прогнозів. Обґрунтовано доцільність розробки програмних систем, які реалізують сучасні методи штучного інтелекту, у тому числі машинного навчання, глибокого навчання, обробки природної мови та інших технологій для забезпечення аналізу ринку, виявлення закономірностей та надання прогнозів щодо трендів крипторинку. Використання такого ПЗ буде допомогою інвесторам у визначенні потенційно прибуткових інвестиційних можливостей, в управлінні ризиками та прийнятті обґрунтованих рішень в умовах високої невизначеності.