Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
10 результатів
Результати пошуку
Документ Одержання порошку вольфраму через електрохімічне перероблення вольфрам-кобальтових псевдосплавів для модифікації арамідної тканини(Національний університет цивільного захисту України, 2022) Тульський, Геннадій Георгійович; Ляшок, Лариса Василівна; Гомозов, Валерій Павлович; Васильченко, О. В.; Скатков, Л. І.Документ Методичні вказівки до виконання лабораторнаї роботи "Електрохімічний синтез йодоформу"(Національний технічний університет "Харківський політехнічний інститут", 2021) Ляшок, Лариса Василівна; Бровін, Олександр Юрійович; Коваленко, Юлія Іванівна; Гомозов, Валерій ПавловичДокумент Електрохімічний синтез чутливого елемента для амперометричного сенсору на основі оксиду ніобію(Національний університет цивільного захисту України, 2021) Тульский, Геннадій Георгійович; Ляшок, Лариса Василівна; Гомозов, Валерій Павлович; Васильченко, О. В.; Mykhailova, LarysaДокумент Електрохімічний синтез пористого кристалічного оксиду танталу(Дослідно-видавничий центр Наукового товариства ім. Шевченка, 2018) Водолажченко, Сергій Олександрович; Ляшок, Лариса Василівна; Гомозов, Валерій Павлович; Скатков, Л. І.In this study, the mechanism defined electrochemical synthesis AOP crystal structure, shown that the formation of AOS on tantalum flows through the solid phase polysurface mechanism of the formation of the lower valence oxides, which are the nuclei of a crystalline phase. The choice of electrolyte components for electrochemical synthesis of crystalline porous tantalum on AOP. The method of electrochemical impedance spectroscopy to determine the equivalent circuit elements, which characterize the basic properties of the synthesized AOP.Документ Кінетика суміщених катодних процесів у водному розчині NaCl(Київський національного університету технологій та дизайну, 2020) Рутковська, Катерина Сергіївна; Тульський, Геннадій Георгійович; Гомозов, Валерій Павлович; Ворона, Т. В.Мета. Дослідження кінетики суміщених катодних процесів в електрохімічному синтезі гіпохлориту натрію. Інтенсифікація процесу відновлення молекулярного кисню у водному розчині NaCl для удосконалення електрохімічного синтезу гіпохлориту натрію із застосуванням газодифузійного катоду. Дослідження впливу газодифузійного режиму на кінетику катодних процесів, визначення діапазонів потенціалів та густин струму перебігу суміщених катодних реакцій. Методика. Циклічна вольтамперометрія для дослідження кінетичних параметрів катодного процесу із застосуванням імпульсного потенціостата MTech PGP-550M. Йодометричне титрування для визначення концентрації гіпохлориту натрію. Результати. Встановлені діапазони потенціалів перебігу суміщених катодних процесів в умовах без подачі повітря і з подачею повітря через газодифузійний електрод. Показана можливість деполяризації киснем повітря катодного процесу із застосуванням газодифузійного режиму роботи поруватого графітового електроду. Для більшого розуміння впливу подачі повітря на перебіг суміщених катодних процесів побудовано сумарну та парціальні (відновлення кисню і виділення водню) поляризаційні залежності без подачі повітря та при подачі повітря у водному розчині 3 моль/дм³ NaCl. Одержані поляризаційні залежності доводять, що подача повітря в газодифузійний електрод призводить до зростання граничної густини струму відновлення кисню з 2 до 8 мА/см², що вказує на перспективу застосування газодифузіного катоду. Наукова новизна. Зміна природи катодного процесу дозволяє значно знизити різницю електродних потенціалів. Керуючі швидкістю подачі кисню, можна перешкоджати підводу ClО⁻ до поверхні катоду. Практична значимість. Для галузі електрохімічних виробництв полягає в удосконаленні електрохімічного синтезу гіпохлориту натрію за рахунок підвищення виходу за струмом та зниження питомих витрат електроенергії. При зміні природи катодного процесу з виділення водню на відновлення підведеного до границі катод–електроліт кисню, за допомогою газодифузійного катоду буде вирішена проблема катодного відновлення ClО⁻, без забруднення кінцевих розчинів гіпохлориту натрію.Документ Електроліт для осадження покриттів із сплаву олово-цинк(ДП "Український інститут інтелектуальної власності", 2020) Дерібо, Світлана Германівна; Гомозов, Валерій Павлович; Тульський, Геннадій ГеоргійовичЕлектроліт для осадження покриттів із сплаву олово-цинк, що містить оксид цинку, хлористе олово, хлористий амоній і цитрат натрію, причому для підвищення розсіювальної здатності електроліту і стабільності складу сплавів електроліт додатково містить неонол.Документ Електрохімічне осадження сплаву олово–цинк з цитратно–аміакатного електроліту(Національний технічний університет "Харківський політехнічний інститут", 2021) Дерібо, Світлана Германівна; Лещенко, Сергій Анатолійович; Гомозов, Валерій Павлович; Коваленко, Юлія ІванівнаДосліджено катодні процеси електрохімічного осадження сплаву олово–цинк в цитратно–аміакатних електролітах. Концентрації основних компонентів досліджуваного електроліту (г/дм3): олова хлорид (SnCl2·2H2O) – 44, цинку оксид (ZnO) – 4, амонію хлорид (NH4Cl) –100, натрію цитрат (Na3C6H5O7) –100. Столярний клей (1,5 г/дм3) та неонол (4 мл\дм3) додавали в електроліт як поверхнево–активні речовини. Встановлено, що якісні покриття без підігріву та перемішування осаджуються тільки в діапазоні pH від 6,0 до 7,0. Додавання до електроліту вказаних речовин очікувано призводило до гальмування відновлення металів, покращення кристалічної структури осаду, але зменшувало катодний вихід за струмом. Дослідження, проведені за допомогою комірки Хулла, показали, що електроліт, який містить неонол як поверхнево–активну речовину, продемонстрував найкращу розсіювальну здатність у порівнянні з іншими розчинами. Залежність виходу сплаву за струмом від катодної густини струму показала, що в діапазоні густин струму від 0,5 А/дм2до 4 А/дм2 вихід за струмом нелінійно зменшується з 82% до 52%. Експериментально одержана залежність вмісту цинку в сплаві від катодної густини струму показала можливість одержання сплавів з вмістом цинку від 8% до 33%. Одержані результати дозволили визначити, що для осадження сплаву з вмістом цинку 20–25 %, який забезпечує найкращі антикорозійні властивості покриття, необхідно здійснювати процес при катодній густині струму 1,5–2,0 А/дм2, при цьому вихід за струмом складає близько 70 %, швидкість осадження сплаву –0,44–0,54 мкм/хв. Одержані покриття мають напівблискучий вигляд, дрібнокристалічну структуру, світло–сірий колір, добре зчеплені з основою.Документ Дослідження фізико-хімічних властивостей пористого оксиду ніобію(Національний технічний університет "Харківський політехнічний інститут", 2019) Водолажченко, Сергій Олександрович; Ляшок, Лариса Василівна; Гомозов, Валерій Павлович; Дерібо, Світлана ГерманівнаДокумент Обґрунтування технологічних показників застосування газодифузійного катоду в електрохімічному синтезі розчинів гіпохлоритів(Національний технічний університет "Харківський політехнічний інститут", 2020) Рутковська, Катерина Сергіївна; Тульський, Геннадій Георгійович; Гомозов, Валерій Павлович; Русінов, Олександр ІвановичДля удосконалення виробництва гіпохлориту натрію шляхом електролізу водного розчину хлориду натрію застосували газодифузійний електрод для реалізації деполяризації катодного процесу киснем повітря. У якості матеріалів для реалізації деполяризації катодного процесу на поруватому сітчастому струмопідводі були обрані: оксиди марганцю, оксиди кобальту, оксиди рутенію. Ці оксиди характеризуються низькою перенапругою в кисневій реакції. Оксиди обраних металів наносили на сітчастий струмопідвід методом термічного розкладу покривних розчинів. Газодифузійний електрод складався з футерованого титанового струмопідводу, диспергатора газу з поруватого графіту і зовнішнього сітчастого робочого елементу, на якому і відбувались катодні реакції. Одержання каталітично активного шару оксиднометалевих покриттів здійснювалось методом термічного розкладання покривних розчинів. Такий метод повністю відповідає вимогам, що пред’являються до малозношувальних оксиднометалевих електродів для електролізу водних розчинів хлориду натрію: можливість регулювання складу композиційного покриття в широкому діапазоні концентрацій компонентів. На вольт-амперних циклічних залежностях катодного процесу, для всіх досліджувальних матеріалів, спостерігаються визначені ділянки відновлення кисню та суміщеного відновлення кисню і виділення водню. Перша ділянка відновлення кисню спостерігається до рівноважних потенціалів водневої реакції (приблизно – 0,42 В). Швидкість відновлення кисню є невелика і складає 3…5 мА/см2. Різниці в ході вольт-амперної залежності не спостерігається через високу швидкість розгортки потенціалу, яка не призводить до збіднення розчину за киснем у випадку роботи катоду без подачі повітря. На другій ділянці (при потенціалах, що є більш негативним за рівноважний потенціал водневої реакції) спостерігається значне зростання швидкості катодної реакції за рахунок виділення водню. Кисень, при цьому, відновлюється на граничній густині струму. На третій ділянці (більше за – 1,5 В) швидкість катодного процесу практично повністю визначається швидкістю виділення водню. Вплив подачі повітря в газодифузійний катод спостерігається при порівнянні зворотнього ходу циклічних вольт-амперних залежностей. На поверхні сталевої сітки спостерігається зростання струму зворотного ходу в діапазоні потенціалів – 1,0 до 0 В. Що вказує на збільшення адсорбованих часток, що приймають участь в катодному процесі. Як було показано раніше, цей діапазон потенціалів відповідає 1-й і 2-й ділянкам одержаних залежностей на яких відбуваються переважне відновлення кисню. Тому, зростання струму зворотного ходу, при потенціалах позитивніших за 1,0 В, можна пояснити впливом адсорбції кисню на поверхні газопроникнених сітчаних сталевих катодів при подачі повітря. Додавання гіпохлорит-іону практично не впливає на густину струму на першій і другій ділянках вольт-амперних залежностей. Спостерігається зниження катодної густини струму при потенціалах, що є більш негативними від рівноважного потенціалу водневої реакції. Це вказує на певне гальмування процесу виділення водню. На третій ділянці густина струму теж зменшується. Це вказує на те, що гіпохлорит-іони у кількості 0,08 моль дм3 не приймають участь у катодному відновленні. Рекомендованою густиною струму, для досліджуваної конструкції газодифузійного катоду, є 15 мА/см2 при температурі 291…293 К. Катодне відновлення гіпохлорит-іонів, за цих умов, знижується на 55…60 %.Документ Вплив механічної обробки поверхні сплаву АМГ на поведінку анодних оксидних плівок(НТУ "ХПІ", 2017) Самойленко, Сергій Олексійович; Гомозов, Валерій Павлович; Дерібо, Світлана Германівна; Білоус, Тетяна АндріївнаРозроблено технологію одержання високоякісної поверхні анодних оксидних плівок (АОП) на алюмінієвих сплавах АМг-3М шляхом їх послідовного механічного шліфування та полірування за допомогою алмазних паст різної зернистості. Вказана технологія дозволяє одержувати блискучу поліровану поверхню, значення Ra якої не перевищують 0,03 мкм. Проведено мікроаналіз матриці сплаву для визначення хімічного складу включень на поверхні алюмінієвих сплавах АМг, як перед процесом анодування, так і після, тобто безпосередньо на поверхні АОП. Визначено, що вміст легуючих елементів і домішок в одержаних АОП суттєво менший порівняно з їх концентрацією у сплаві. Одержані АОП відрізняються високими корозійно-захисними та діелектричними характеристиками.